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Abstract

Wildlife conservation strategies focused on one season or population segment may fail to

adequately protect populations, especially when a species’ habitat preferences vary among

seasons, age-classes, geographic regions, or other factors. Conservation of golden eagles

(Aquila chrysaetos) is an example of such a complex scenario, in which the distribution, hab-

itat use, and migratory strategies of this species of conservation concern vary by age-class,

reproductive status, region, and season. Nonetheless, research aimed at mapping priority

use areas to inform management of golden eagles in western North America has typically

focused on territory-holding adults during the breeding period, largely to the exclusion of

other seasons and life-history groups. To support population-wide conservation planning

across the full annual cycle for golden eagles, we developed a distribution model for individ-

uals in a season not typically evaluated–winter–and in an area of the interior western U.S.

that is a high priority for conservation of the species. We used a large GPS-telemetry data-

set and library of environmental variables to develop a machine-learning model to predict

spatial variation in the relative intensity of use by golden eagles during winter in Wyoming,
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USA, and surrounding ecoregions. Based on a rigorous series of evaluations including

cross-validation, withheld and independent data, our winter-season model accurately pre-

dicted spatial variation in intensity of use by multiple age- and life-history groups of eagles

not associated with nesting territories (i.e., all age classes of long-distance migrants, and

resident non-adults and adult “floaters”, and movements of adult territory holders and their

offspring outside their breeding territories). Important predictors in the model were wind and

uplift (40.2% contribution), vegetation and landcover (27.9%), topography (14%), climate

and weather (9.4%), and ecoregion (8.7%). Predicted areas of high-use winter habitat had

relatively low spatial overlap with nesting habitat, suggesting a conservation strategy target-

ing high-use areas for one season would capture as much as half and as little as one quarter

of high-use areas for the other season. The majority of predicted high-use habitat (top 10%

quantile) occurred on private lands (55%); lands managed by states and the Bureau of Land

Management (BLM) had a lower amount (33%), but higher concentration of high-use habitat

than expected for their area (1.5–1.6x). These results will enable those involved in conser-

vation and management of golden eagles in our study region to incorporate spatial prioritiza-

tion of wintering habitat into their existing regulatory processes, land-use planning tasks,

and conservation actions.

Introduction

Strategies to conserve wildlife populations are most effective when they capture the full range

of habitats and behaviors within a species’ lifecycle [1]. Conservation planning can be espe-

cially complex for species with habitat preferences and migratory strategies that vary among

seasons, age-classes, regional sub-populations, and other factors. For such species, manage-

ment strategies focused on one season or group may fail to adequately protect the larger popu-

lation. For example, conservation efforts on breeding grounds have failed to slow declines in

populations of some grassland birds because those populations are primarily influenced by

loss of wintering habitat [2]. Similarly, a network of conservation areas based on breeding hab-

itat of greater sage-grouse (Centrocercus urophasianus) protected only 65% of winter locations

[3]. Conservation planning is further complicated when such differences are driven by multi-

ple factors, as was the case for moose (Alces alces) that exhibited variation in habitat associa-

tions and migratory strategies among both age-classes and geographic regions [4].

Management of golden eagles (Aquila chrysaetos) is an example of such a complex scenario,

in which the distribution, habitat use, and migratory strategies of this species varies by age-

class, reproductive status, region, and season [5]. Regional conservation planning for golden

eagles will therefore be most effective if it accounts for both seasonal variation in the composi-

tion of the population in a given area and potential differences in the breeding status-, age-,

and sex-specific habitat components used by eagles that occur there. For example, golden eagle

populations in the western U.S. during winter are a mixture of year-round resident adult terri-

tory-holders, long-distance migrants from Alaska and northern Canada, short-distance

migrants from neighboring regions, non-breeding adult resident “floaters”, and pre-breeding

aged individuals from both resident and migrant populations [6]. Despite this complexity,

research aimed at mapping priority use areas to inform management of golden eagles in west-

ern North America has focused largely on territory-holding adults during the breeding season.

While the migration season has been studied to some extent (primarily north of the
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coterminous U.S. [7, 8]), little information is available on distribution and habitat selection

during the winter season in interior western North America. In the core of this species’ range,

winter distribution of resident adults with breeding territories is likely represented in available

information on nesting habitat [9, 10], but the extent to which protecting nesting habitat also

protects other eagle groups during winter is unknown. A conservation plan developed around

breeding habitats may thus fail to adequately conserve birds that migrate to the same general

area to overwinter, as well as resident non-breeding birds.

Threats to golden eagles also vary among seasons and life-history groups as a function of

the dynamic spatial and temporal overlap in the distributions of both eagles and hazards [11,

12]. As such, some hazards affect eagles year-round (e.g., turbine strike mortality at wind

energy developments), while others affect only one group of eagles during one season (e.g., dis-

turbance of adult resident breeders and offspring at nest sites), and others have a dispropor-

tionately large impact during a specific season [e.g., lead poisoning from big-game hunting

during fall [13]], collisions with vehicles while feeding on roadkill during winter [14, 15]. The

population-level risk likely is greatest during winter when resident golden eagle populations in

the lower-48 states are augmented by long-distance migrants from Alaska and Canada, result-

ing in exposure of a larger and more geographically diverse group of eagles to hazards during a

period when they may be stressed from lower availability of live prey [15]. Risk to migrants

and non-breeding residents could be further elevated to the extent that their winter distribu-

tions differ from the nesting habitat. Efforts to avoid risk to eagles (e.g., siting wind energy

developments or retrofitting dangerous power poles) could thus be improved by accounting

for areas of high-intensity winter use outside breeding habitat. Moreover, because regulations

protecting golden eagles in the U.S. assign equal value to individuals regardless of geographic

origin [16, 17], an improved understanding of winter distributions could help to reduce risk of

liability for developers.

The state of Wyoming, USA, provides continentally important, year-round habitat for

golden eagles [18, 19], but also includes a range of threats to the species. However, lack of

information on the winter distribution of golden eagles is currently limiting full annual cycle

conservation of both the year-round residents and long-distance northern migrants that win-

ter in this region. To address this conservation problem, we developed models to predict spa-

tial variation in intensity of use by wintering golden eagles in ecoregions that overlap with

Wyoming, USA. Our specific objectives were to:

1. Develop models to predict spatial variation in relative intensity of use by golden eagles dur-

ing winter for the life-history groups of the population in Wyoming not accounted for in

existing models of nesting habitat.

2. Assess the reliability of predictions for decision making by conducting a thorough evalua-

tion of model performance, including assessments by life-history groups of eagles, and geo-

graphic subregions.

3. Compare mapped predictions for the winter season with available nesting habitat models to

quantify the extent and geographic pattern of overlap.

Materials and methods

Study area

Our 765,953-km2 study area was based on level-III North American terrestrial ecoregions

[20], as modified by Dunk et al. [10] to define modeling ecoregions relevant to golden eagles.

Our study area consisted of those ecoregions that overlapped or were adjacent to state of
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Wyoming, USA, including the Forested Montane, Intermontane Basins and Valleys, North-

western Plains, Southwestern Plains, Uinta Basin and North Park, and Wyoming Basin (Fig 1),

to which we made some minor modifications (S2 File). We focused on Wyoming because it is

among the most important areas for golden eagles in the western U.S., demonstrated by its

high breeding-season density of golden eagles [19], extensive nesting habitat [10], and large

numbers of long-distance migrants during winter [7, 18]. We included portions of the ecore-

gions outside Wyoming to improve predictions within the state by leveraging data from eco-

logically similar areas and to increase the extent of the area where our results could be used to

inform conservation.

Fig 1. Study area for winter-season distribution modeling of golden eagles in Wyoming, USA, and surrounding ecoregions. Map shows study area

(black outline), with boundaries of states (gray lines) and ecoregions (colored shading). Inset shows the location of the study area in the continental

United States. Ecoregion data from the Commission for Environmental Cooperation [20] as modified by Dunk et al. [10], state boundaries from U.S.

Census Bureau [21], and terrain base map modified from National Hydrography Dataset [22].

https://doi.org/10.1371/journal.pone.0297345.g001
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Golden eagle location data

We acquired telemetry location data for golden eagles from across western North America

that were instrumented with transmitters as part of at least 17 studies by 8 collaborator groups,

including Federal, State, Tribal, and non-governmental organizations (S2 File). Transmitters

included models that sent Global Positioning Systems (GPS) location data over mobile phone

or ARGOS networks, and Doppler shift location data sent via the ARGOS network.

We used a series of filtering steps to select accurate locations that represented winter-season

daytime sedentary locations of golden eagles from life-history groups not associated with

breeding territories in our study area (Table 1).

1. Initial data proofing. To remove erroneous locations from the winter telemetry data,

we visually inspected GPS fixes for obvious outliers, and retained Argos fixes in location classes

3, 2, and 1 (estimated error radii of<250 m, 250–500 m, and 500–1500 m, respectively [23,

24]) that filled in gaps in GPS data series. Fixes were filtered via the Douglas Argos-filter algo-

rithm [25]. We removed fixes that resulted in spikes with angles < 15˚ and 25˚ lengths > 2500

m and 5000 m, respectively. We then passed fixes through velocity filters of 20, 27.8, and 40 m/

s, generated tracks for each filtered set, and selected which velocity filter to use based on visual

inspection of individual tracks. After filtering, we standardized the locations temporally by

subsampling to a maximum of 1 location per individual per hour.

2. Season and time of day. We attributed locations with season, time, and time of day.

We used a conservative definition of the winter season as December-February to exclude most

migratory movements in spring and fall. While the data used to test and train the model

included only locations from the winter period, we used summer season locations to define

breeding season home-ranges used as part of the data filtering process (see life-history groups

section below), which we defined as June-August. We sought to develop a model that would

accurately predict daytime use, so we removed locations at night and within one hour of sun-

rise or sunset based on the location and timestamp. To do this, we used python to implement

the National Ocean and Atmospheric Administration Solar Calculation method [26], which is

based on astronomical algorithms.

Table 1. Outline of data filtering steps for telemetry locations used to model the winter-season distribution of

golden eagles in Wyoming, USA, and surrounding ecoregions.

Step name Filtering action Goal

1. Initial data

proofing

Remove erroneous and imprecise

locations

Use accurate eagle locations for modeling

2. Season and

time of day

Retain winter daytime locations Focus model on daytime winter use

3. Life-history

group

Remove locations associated with

breeding-season home ranges

Focus model on life-history groups (Table 2) not

represented in existing nesting habitat models

Classify locations by life-history group for later evaluation

4. Behavioral

state

Remove fast, long-distance

movements and retain sedentary

locations

Focus model on locations likely to be most representative

of winter habitat selection, rather than migratory

transiting movements

5. Temporal

thinning

Retain 2 locations per day per

individual

Reduce auto-correlation of telemetry locations

6. Test-train data

selection

Split 75% for model training and

25% for testing

Train model on large dataset, while testing with

observations not used in model development

Table shows the name of each step, the filtering action taken, and its goal. Detailed description and justification are

included in paragraphs for each step name.

https://doi.org/10.1371/journal.pone.0297345.t001
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3. Life-history groups. Our objective was to complement existing models of nesting habi-

tat [10] with a model of winter-season use by eagles that was not associated with local breeding

territories. Thus we included migrants, non-migrant non-territorial eagles of all ages, and loca-

tions outside nesting territories from adult non-migrant territory holders (i.e., resident breed-

ers) and their young. To accomplish this, we used a multi-step process to classify individuals

by age, migratory status, and territory status in our study area (Table 2), and annotated their

locations with those attributes. We then removed locations associated with known or sus-

pected breeding territories within our study area. Age classes were assigned using a biological

year starting in April, when eggs typically hatch in our study area. We used the following steps

to classify and select data for analysis:

First, we defined migrants as individuals that originated or had a summer home range

north of 58.25͒ N latitude, and retained all winter locations within our study area, regardless of

age. We visually inspected all tracks to confirm that no birds tagged as nestlings in the study

area migrated north during the following year. All winter locations from these individuals

were relevant for our analysis because they could not have had breeding home ranges in our

study area. Individuals�4 years old were classified as Adult Migrants and<4 years as Non-

adult Migrants.

For eagles tagged as nestlings or fledglings with known natal sites in the study area, we

removed locations that were both within 1 year of tagging and�3.2 km of the natal site (“terri-

tory core area” radius from [27]) because these locations were associated with known breeding

territories. For eagles tagged in their first calendar year of life with unknown natal sites

(n = 10), we estimated annual 95% kernel density estimator (KDE; Worton method [28] with

proportion of 0.7) home range polygons for the summer and winter seasons and removed all

locations for individuals that had overlapping, small (<200 km2) seasonal home ranges (n = 2)

because we could not be certain the overlap was not related to their natal territory. This was a

conservative approach to make sure we removed locations of 1-year old eagles that could have

been in their natal territory. Individuals in this group were classified as Non-Adult Non-

migrants.

For 2-3-year-old eagles not tagged as nestlings, we retained all winter locations within our

study area because they were too young to be associated with their own breeding territory and

the likelihood they returned to a natal territory was minimal [24]. Individuals in this group

were also classified as Non-Adult Non-migrants.

Table 2. Sample sizes of golden eagle telemetry locations used to model winter-season distribution of golden eagles in Wyoming, USA, and surrounding

ecoregions.

Name Age Migratory Status Territory Status in Study Area N locations (N deployments)

Daytime Night roost

Training Test Test

Adult migrants Adult Migrant Non-territorial 5290 (54) 1785 (51) 3575 (53)

Adult resident “breeders” a,b Adult Non-migrant Territory holder 4889 (60) 1620 (57) 1092 (58)

Adult resident “floaters” b Adult Non-migrant Non-territorial 3052 (44) 972 (43) 7173 (72)

Non-adult residents a Non-adult Non-migrant Non-territorial 9678 (74) 3220 (70) 6284 (88)

Non-adult migrants Non-adult Migrant Non-territorial 3581 (36) 1232 (34) 2021 (31)

Table shows the number of daytime training and test locations, and night roost locations by age, migratory status, and territory status, with number of individual

deployments is shown in parentheses.
a Excluding locations of resident adult territory holders within breeding territory polygons and�1 year-old non-adults within 3.2 km of natal site (see life-history group

classification methods for details).
b Adult resident “breeders” and “floaters” were combined for model evaluations.

https://doi.org/10.1371/journal.pone.0297345.t002
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For adult and near-adult eagles (�4 years old), we retained all winter locations for individu-

als that had all summer locations >16 km outside the study area because that indicated they

did not have a breeding territory in the study area. If any summer locations for an individual

were within 16 km of the study area, we estimated annual 95% KDE home range polygons for

the summer season, removed locations within the home range, and classified the remaining

locations as Adult Non-migrant Non-territorial. We removed all points for individuals in

this group with inadequate data to assess potential summer territories (n = 5), which we

defined as those with KDEs created from <25 locations and/or <30 days.

The remaining adult individuals had summer home ranges that were within or substantially

overlapped our study area. We considered any bird in this group with a home range size<200

km2 to be a territory holder. While our dataset and other studies (e.g., [29]) suggested home

ranges of known breeders within our study area were<100 km2, we chose a more conservative

threshold of 200 km2 to ensure that we did not include locations from within breeding home

ranges. We retained all winter points for adult eagles with summer home ranges>200 km2, indi-

cating non-territorial status, and classified them as Adult Non-migrant Non-territorial (i.e.,

adult resident “floaters”). For adult eagles with summer home ranges<200 km2, we excluded win-

ter locations that fell within individuals’ previous summer KDE, or the following summer KDE if

the previous summer was not available. We retained locations from outside the KDE home ranges

and classified them as Adult Non-migrant Territory-holders (i.e., adult resident “breeders”).

4. Behavioral state. We used the residence in space and time (RST) method to classify

points as associated with either “sedentary” or “transiting” movements. The RST algorithm

uses the time spent in a circular area around each point to classify them as distance-intensive

(i.e., transiting), or time-intensive and time- and distance-intensive (i.e., sedentary [30]). To

ensure adequate assessment of movement modeling, we considered only tracking bouts of

�28 days with no gaps >48 hours and modeled discontinuous tracking segments from the

same individual separately. We visually evaluated a range of radii (6, 10.5, 15, 22.5, and 30 km)

and found the results to be similar. Accordingly, we selected the largest radius (30-km) for an

inclusive definition of sedentary behavior that resulted in removal of only the fastest, long-dis-

tance transiting movements. We selected for subsequent analysis only sedentary points

because we expected they would have the strongest signal of habitat use for eagles localized in

wintering ranges, while transiting points would represent longer distance directed movements

(e.g., between foraging areas) in conditions resembling migratory habitat.

5. Temporal thinning. To reduce spatial and temporal autocorrelation of data points, we

randomly sampled 2 locations per individual per day. We included 1 in the morning and 1 in

the afternoon that were separated by a minimum of 1 hr based on dividing the day by solar

noon for the study area during winter (ca. 1220 hrs).

6. Final test-train data selection. From this final filtered dataset, we randomly selected

75% of locations to train the model and withheld 25% of locations for model testing/evaluation.

As part of our model evaluation, we used the life-history classifications of the filtered dataset to

assess whether all subgroups of golden eagles showed the same general patterns of spatial varia-

tion in intensity of use. Additionally, we used a separate dataset of nocturnal roost locations to

evaluate the ability of the model trained on daytime sedentary locations to predict variation in

the relative intensity of use of nocturnal roosting locations. This dataset consisted of one roost

location after civil twilight and closest to 2400 hrs for each bird and night available.

Model development

The primary goal of our analysis was to make accurate predictions to support conservation

planning, and secondarily to understand ecological relationships of golden eagles [31].
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Accordingly, we developed models using a flexible, multi-stage process that emphasized tuning

and evaluation. We selected from a large set of candidate predictors, fitted models with a

machine learning algorithm (MaxEnt [32]), used a tuning process to minimize both over- and

under-fitting, then conducted an extensive set of evaluations to quantify the predictive perfor-

mance of the model for different golden eagle life-history groups and distinct geographic

regions of our study area. To capture all relevant life-history groups with the minimum num-

ber of models, we first developed a combined model using the pooled data for all life-history

groups, which we then evaluated to determine if separate models were warranted for any

groups.

Response variable. The MaxEnt algorithm is a machine learning model that relates pres-

ence and background (i.e., used and available) locations to geospatial variables to generate a

continuous predictive surface (i.e., heat map) of species distribution [32]. MaxEnt is a count-

based model that is equivalent to an inhomogeneous Poisson point process [33]. The response

variable of MaxEnt models trained on locations of unique individuals can be interpreted as the

relative probability of occurrence for the species [33] and technically represents that relative

density of locations [10]. Because we trained our model on thinned GPS telemetry data that

included multiple use locations per individual, we interpreted the response variable as the rela-

tive intensity of use by the species. This terminology is consistent with other count-based mod-

els of resource selection for animal movement data (e.g., [34]). MaxEnt, resource selection

functions, and other models of species distribution are also commonly referred to as Habitat

Suitability Models because they relate occurrence data to geospatial variables that represent

characteristics of habitat [35]. Accordingly, we refer to the response variable of our model as

“relative intensity of use” and also describe the modeled predictions in terms of the distribu-

tion, amount, and relative value of winter “habitat”.

Predictor variables. We compiled a library of environmental variables we predicted

would affect golden eagle habitat selection during winter, consisting of 67 base variables from

the categories of climate and weather (e.g., precipitation, snow depth, temperature; n = 71 vari-

ables total), vegetation and landcover (e.g., proportional cover of vegetation types, greenness

indices; n = 366 variables total), developed areas (e.g., proportional cover of roads and urban

areas; n = 24 variables total), topography (e.g., aspect, landforms, topographic indices; n = 185

variables total), wind and uplift (e.g., height of planetary boundary layer, orographic uplift,

wind speed; n = 86 variables total), and ecoregions (6 ecoregions as categorical variable; n = 1

variable total) (S1 File). Geospatial data for all variables were resampled to 120-m resolution

raster grids, then summarized at�6 spatial extents (120 m to 6.4 km) using a moving window

approach and�4 focal statistics (mean, SD, min, max) appropriate to each variable. The range

of spatial extents was chosen to capture the scales of habitat selection by golden eagles, from

the habitat conditions in the immediate vicinity of a nest site or use location to the broader

extent of a nesting territories or migratory movements. This resulted in the estimation of a rel-

atively large number of variables (>700) that were necessary to optimize the spatial extent and

focal statistic for each environmental predictor in the limited set of base variables. We suggest

that our set of base variables (n = 67) was of a reasonable size to describe the potential ecologi-

cal relationships of golden eagle habitat use over a large study area, and we interpret the selec-

tion of scale and focal statistic for each variable as an optimization step rather than variable

selection per se. Although all animal locations were within the study area, for extraction of

covariate values and model projections, we added a 20-km buffer around the study area to

reduce bias near the edges of the area from missing data in moving window summaries.

We used a three-step process to reduce the number of predictor variables included in the

MaxEnt model based on the methods of Dunk et al. [10]. 1) We selected the “best” neighbor-

hood extent and focal statistic among the covariates derived from each base variable. To do
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this, we computed the ratio of the mean value at training locations to the mean value at a ran-

dom sample of locations (n = 10,000) and retained the covariate with the largest ratio and

<20% of locations with non-zero values. Dunk et al. [10] found that screening predictors

using 10,000 locations was an effective and computationally efficient approach to reduce the

candidate set of variables before fitting models. For competitive variables, we used our judg-

ment to select the scale and focal statistic most consistent with golden eagle ecology, generally

selecting those with medium neighborhood extents and more easily interpretable focal statis-

tics (e.g., mean over SD). 2) We removed redundant variables from the set of predictors

selected in step 1. To do this, we computed variance inflation factors (VIF) among the predic-

tors separately by variable category and removed variables with VIF�4. 3) We fitted an initial

model (described below) with all the covariates retained from step 2, then removed variables

with<1% contribution in multiple runs (2 or 3) until no variables had <1% contribution.

Ecological inference is a common secondary goal of species distribution analyses aimed pri-

marily at spatial prediction, and models with predictors grounded in species’ ecology are

expected to produce fewer spurious relationships and have better transferability [36, 37]. Some

mechanistic interpretation of relationships in distribution models is thus justified, with the

caveat that the correlations do not imply causation. Given the wide range of functional forms

and interactions explored by the MaxEnt algorithm, we further limited our ecological interpre-

tation of variables to their relative importance, and the spatial scale and general direction of

their relationships to golden eagle use.

Model fitting, tuning, and projection. We fitted models using the MaxEnt model algo-

rithm [32]. For all covariates, we evaluated interactions and multiple functional forms, includ-

ing linear, quadratic, product, threshold, and hinge. To reduce sampling bias from areas where

telemetry data were not collected [32, 38], we used 100,000 background (i.e., “available”)

points from an area within 20 km [10] around the training locations (hereafter the “modeled

area”; S1 Fig). To avoid over- or under-fitting the model, we optimized the regularization mul-

tiplier in MaxEnt following the methods of Dunk et al. [10]. The default regularization multi-

plier in Maxent is 1.0, and predicted distribution maps are more localized for smaller values

and more diffuse for larger values. The optimization process seeks to balance the trade-offs

between tightly-fitted models that provide more accurate local predictions in areas with train-

ing data and more general models that have better transferability to areas without training

data [37, 38]. After developing and evaluating the model within the modeled area, we projected

it to the buffered study area, then clipped the predicted surface to the study area boundary

[38]. Our projection step was similar to what Elith and Leathwick [36] term “model-based

interpolation to unsampled sites”, in which predictions are made for the same time period and

range of ecological conditions as the sampling area, in contrast to projecting a model to a new

spatial or temporal frame (i.e., out of sample prediction).

Model evaluation

We used three methods to assess the overall performance of the model. 1) Using the 25% of

locations withheld from the training data, we compared number of use locations predicted by

the model to those observed in the test data. To do this, we used the model to predict the num-

ber of locations in each of 10 equal-interval bins of relative intensity of use following the meth-

ods of Dunk et al. [10], then calculated the coefficient of determination (R2) between the

observed and predicted number of locations in each bin. We interpreted higher values to indi-

cate better fit. 2) Using the 25% of locations withheld from the training data, we evaluated the

extent to which the distribution of test locations differed from random expectation under the

model’s predictions using the Boyce Index [39, 40]. To do this, we estimated the area adjusted
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frequencies (AAF) of the evaluation data locations in each of 10 equal-interval bins of relative

intensity of use, then calculated the Boyce Index as the rank correlation between the AAF of

the bins and the bin ranks. We interpreted values of the Boyce Index>0.90 to indicate good

performance of the model for a group. 3) Using the training data, we conducted a 10x cross-

validation. This evaluation was similar to the first method described above, except that it used

random sub-samples of the training data instead of the withheld data. For each of 10 iterations,

we randomly selected approximately 25% of the training data, refitted the model, then com-

pared the observed and predicted number of locations in 10 equal-interval bins of relative

intensity of use. Although this step was done originally as part of our method to optimize the

regularization multiplier (described above), we report the results along with our overall model

evaluation as further evidence of model performance. We chose to use 10 equal-interval bins

of relative intensity of use for most evaluations as a compromise between having too few bins

to gain insights into the relationship between AAF and bin ranks and the magnitudes of differ-

ences among AAF values of bins, and having too many bins, which would have resulted in

higher bins containing few to no locations and representing exceedingly small portions of the

study area.

Geographic evaluation. To provide end users with a transparent assessment of the mod-

eled predictions across our large study area, we evaluated geographic variation in model per-

formance [41] within two landscape classifications: golden eagle modeling ecoregions (n = 6

regions, ~28,000–365,000 km2 [10]) and subregions based on USFS Ecological Sections

(n = 15 subregions, ~10,000–94,000 km2 [42]). We used the evaluation approach described

above (method 1) to compare the predicted number of use locations in each of 10 equal-inter-

val bins within geographic regions to those observed in the withheld data.

To provide a finer-scale depiction of spatial variation in model performance, we compared

the concordance among quartile bins of observed and predicted values within the cells of

30x30-km and 15x15-km grids overlaid on the modeling area. For each grid cell, we estimated

the number of winter test locations in the cell by multiplying the mean AAF of the cell by the

proportion of the modeling region the cell represented and the total number of winter test

locations. We then divided those predicted numbers into quartile bins and compared them to

quartile bins of the observed number of locations in each cell. We interpreted cells with match-

ing bin ranks as accurately predicted and differences of 1–3 quartiles as representing low,

medium, and high levels of discordance, respectively.

Life-history group evaluation. To assess the performance of our model for the different

life-history groups in the dataset, we used the methods described above to compare the inten-

sity predicted by the model to that observed in the test data (method 1) and calculated the

Boyce Index (method 2) for each life-history group. We interpreted higher values of R2

between the observed and predicted number of locations to indicate better fit of the combined

model across life-history groups and values of the Boyce Index >0.90 to indicate good perfor-

mance of the model for a group. Additionally, we estimated the magnitude of the difference

between the values of the highest and lowest AAF bins as an indicator of maximum difference

in relative intensity among bins, and used the AAF ratio to assess whether the magnitude of

difference was similar among life-history groups (method 3). We interpreted a magnitude of

difference in highest:lowest bin AAF of>25 to indicate good performance of the model for a

group based on ratios of previously published distribution models for golden eagles [10]) and

other species (Northern Spotted Owl, Strix occidentalis caurina [43]; red-tree vole, Arborimus
longicaudus [44]; fisher, Martes pennanti [45]). It was possible that we would find a model

with a large Boyce Index and a small magnitude of difference in highest:lowest bin AAF. If so,

we would consider creating a new model for that sub-group of eagles and not assume that the

combined winter model adequately represented their spatial distribution during winter. The
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magnitude of the difference in AAF is also an indicator of the relative strength of selection,

which we interpreted to indicate differences in habitat selection among life-history groups.

Independent data evaluation. We used an independent dataset of golden eagle GPS

telemetry locations from within our study area (S1 Table) to test the ability of the model to pre-

dict the distribution of locations from new individuals. We used these data as an independent

test dataset because they were not available until after our model had been developed and cov-

ered only portions of our study area. To do the evaluation, we processed the independent data

as described above for the model training data, then compared the intensity predicted by the

model to that observed in the independent data (method 1) and its difference from random

expectation using the Boyce Index (method 2).

Nocturnal roost evaluation. As a final step, we tested the transferability of our model

trained on daytime use locations to predicting the relative intensity of use of nocturnal roost

locations aggregated across all individuals within each life-history group. To do this, we used

the same methods as the other evaluations to compare the intensity predicted by the model to

that observed in the test data (method 1) and calculated the Boyce Index (method 2) for each

life-history group. We included this evaluation because we thought it would be valuable for

land managers to know whether our model trained and tested on daytime use locations also

accounted for spatial variation in nocturnal roost locations or if a separate model would be

needed for spatial prioritization of that habitat component.

Summary and comparisons

Overlap with nesting habitat. To quantify differences in the distribution of wintering

and nesting habitat, we overlaid the winter model predictions with the ecoregional golden

eagle nesting habitat models of Dunk et al. [10]. The nesting habitat models used a similar

overall modeling approach to our winter-season model, except the training data were nest

locations and separate models were developed for each ecoregion [10]. We calculated the

Spearman correlation between the overlapping area of the predictive surfaces for each ecore-

gional nesting habitat model and the winter model as a measure of their overall similarity, and

the percent overlap of the area within the top 10% and 20% quantiles as a measure of the

degree to which the models agreed in areas of high predicted use.

Surface management. To describe the model predictions and help identify where oppor-

tunities exist for management and conservation, we summarized the percentage of high-use

eagle habitat (top 10% and 20% quantile areas of predicted intensity of use) within administra-

tive categories (i.e., surface management entities). As an index of the concentration of high-

use habitat among land management categories, we calculated the ratio of observed to

expected habitat by dividing the percentage of the top 10% bin by the percentage of the study

area composed by each category. Values of the observed:expected ratio >1 indicated more

high-use habitat than expected given the size of an administrative area, while values <1 indi-

cated less.

Results

The raw golden eagle telemetry dataset compiled for our study area consisted of 659,521 loca-

tions from 344 deployments spanning 2006–2020. The filtered dataset comprised 35,319 loca-

tions from 203 individuals, with each individual contributing an average of 2.69 years of data

(SD = 1.76) and 131 locations (SD = 126, range = 1–784). From the filtered dataset, we retained

26,490 locations (75%) for model training and 8,829 locations (25%) for testing (Table 2). The

final dataset was comprised of 91% GPS telemetry and 9% Doppler shift locations.
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We began model development with 67 base variables, which estimated for multiple spatial

extents, summary statistics, and seasons, resulted in 733 total candidate variables. Following

steps 1–2 of our variable reduction process, we retained 63 covariates for inclusion in the initial

model. After dropping covariates that contributed <1% (step 3), the final model included 17

covariates (Table 3 and S2 Fig). The covariates contributing to the final model were wind and

uplift (40.2% contribution), vegetation and landcover (27.7%), topography (14%), climate and

weather (9.4%), and ecoregion (8.7%). Variables at the finest scale (120-m focal extent) con-

tributed the most (42.5%), with approximately half of contributions from variables summa-

rized at extents of�1 km (56.8%) or�2 km (43.2%).

The optimized regularization multiplier of 4.0 was greater than the default of 1.0, suggesting

a relatively more general output distribution achieved the best balance between over- and

under-fitting. When projected to the entire study area, the final model predicted large areas

with relatively low-intensity winter use by golden eagles and a smaller area of relatively high-

intensity use that was concentrated in Wyoming (Fig 2). Areas with higher predicted intensity

of use occurred in portions of the Wyoming Basin, including the upper Powder, upper Wind

River, western Bighorn, Shirley, and Laramie Basins, and the extent of Wyoming Basin in Col-

orado, southwestern Wyoming, the southern Great Plains of southeastern Wyoming, and the

intermontane valleys of western and central Montana.

Model performance

The final model made accurate predictions of the withheld test data, with average deviation

between observed and predicted values across all bins of 7.3% (SD = 12.9%), and�2.8% for

the top 8 bins (Fig 3). The rank-correlation of bins (Boyce Index) was 1.00, indicating the

model classified the withheld data well. The 10x cross-validation using the training data also

suggested a high degree of accuracy, with narrow and overlapping 95% CI for all bins (Fig 3).

Geographic subregions\. The model accurately predicted relative intensity of use within

geographic subregions for both the larger ecoregions (R2 = 0.977; Fig 4) and smaller ecological

subregions (R2 = 0.91; S3 Fig). The grid-based evaluations showed that the model’s predictive

Table 3. Covariates included in the final model of winter-season distribution of golden eagles in Wyoming, USA, and surrounding ecoregions.

Variable Category Base variable Name Focal Extent Focal Statistic Contribution (%)

Wind and uplift Orographic uplift index (Winter) 120 m Mean 22.0

Wind and uplift Height of planetary boundary layer (Winter) 32 km Mean 14.6

Ecoregion Ecoregion 30,100–388,988 km2 NA 8.7

Vegetation and landcover Normalized difference vegetation index (Spring) 120 m Mean 6.6

Topography Terrain Ruggedness Index 120 m SD 6.4

Climate and weather Snow depth (Winter) 500 m SD 5.1

Vegetation and landcover Proportion of cool semi-desert scrub and grassland landcover 1 km SD 4.8

Vegetation and landcover Proportion of shrub and scrub landcover 500 m Mean 4.4

Topography Proportion of steeply sloping landforms 6.4 km Mean 4.4

Climate and weather Mean annual precipitation amount 120 m Mean 4.3

Vegetation and landcover Proportion of tall sagebrush landcover 2 km SD 4.2

Wind and uplift Thermal uplift index (Winter) 3 km Mean 3.6

Vegetation and landcover Proportion of cottonwood tree landcover 2 km Mean 2.8

Vegetation and landcover Percent herbaceous canopy cover 3.2 km SD 2.6

Vegetation and landcover Proportion of alfalfa cropland landcover 3.2 km Mean 2.3

Topography Local elevational difference 120 m SD 1.9

Topography Topographic wetness index 120 m SD 1.3

https://doi.org/10.1371/journal.pone.0297345.t003
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accuracy decreased with spatial scale, with greater concordance among quartile bins for the

30x30-km grid evaluation than the 15x15-km grid. For both grids, the highest degree of con-

cordance was found for the lowest (90.28% for the 30x30-km grid) and highest (59.63% for the

30x30-km grid) quartiles, while most discordant predictions were off by only one quartile

(S4 Fig). Among the four quartiles in the 30x30-km grid, the proportion of cells that were dis-

cordant by two quartiles ranged from 0.028 to 0.224, while the proportion discordant by three

quartiles ranged from 0.014 to 0.101 (S4 Fig).

Independent test data. The independent test dataset included 191,219 locations from 46

individuals, which our filtering process reduced to 3,429 locations from 24 individuals

Fig 2. Map of spatial variation in the relative intensity of daytime winter use by golden eagles in Wyoming, USA, and surrounding ecoregions.

State borders and topographic shading are shown in gray. Color scale for intensity of use is labeled with the upper bounds of 10 equal-interval bins from

0.0–1.0. State boundaries from U.S. Census Bureau [21] and terrain base map modified from National Hydrography Dataset [22].

https://doi.org/10.1371/journal.pone.0297345.g002
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spanning 2017–2020. The test area was 118,435 km2 (15% of the study area), centered in

south-eastern Wyoming and including an area of western Montana. Our model accurately

predicted the distribution of the independent test data among bins, with average deviation

between observed and predicted values across all bins of 25% (SD = 25%), and�11% for the

top 3 bins (Fig 5). The rank-correlation of bins (Boyce Index) was 1.00, indicating the model

classified the independent data well.

Life-history and behavioral groups. The model accurately predicted relative intensity of

use for life-history groups, based on the correlation of observed and predicted values (R2 =

0.917; Fig 6) and the rank-correlation of area adjusted frequencies (�0.97; Table 4). Thus, we

interpreted the single model as adequate for all life-history groups and did not create separate

models for any groups. The magnitude of the difference in intensity between the highest and

lowest AAF bins was greatest for adult non-migrants (854), suggesting the best model perfor-

mance for that group, followed by non-adult (162) and adult (129) migrants, and smallest for

non-adult non-migrants (51). The model, which was developed with daytime sedentary

Fig 3. Bar graphs of predicted and observed numbers of winter locations of golden eagles in each of 10 equal-interval bins of relative intensity

of use for 25% of locations (n = 8,829) withheld for model testing (upper panel) and cross-validation using 22% (n = 5,719) of training data

points randomly selected 10x (lower panel).

https://doi.org/10.1371/journal.pone.0297345.g003
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locations, was also a relatively good predictor of nocturnal roost locations across life-history

groups (R2: 0.793), with the greatest deviation for the adult non-migrant group (S5 Fig).

Overlap with nesting habitat

The winter and nesting models had weak to moderate positive correlations in their areas of

overlap within the six ecoregions. Considering only areas of high predicted use, the top 20% of

area from the models overlapped by 35–50% (Fig 7) and the top 10% of area overlapped by

23–41% (Table 5).

Fig 4. Scatterplots of predicted versus observed numbers of golden eagle winter locations among 10 equal-interval bins of relative

intensity of use within 6 ecoregions. Ecoregion codes are Forested Montane (FOMO), Intermontane Basins and Valleys (IMBV),

Northwestern Plains (NWPL), Southwestern Plains (SWPL), Uinta Basin and North Park (UBNP), and Wyoming Basin (WYBA). Ecoregion

data from the Commission for Environmental Cooperation [20] as modified by Dunk et al. [10] and state boundaries from U.S. Census Bureau

[21].

https://doi.org/10.1371/journal.pone.0297345.g004

Fig 5. Predicted and observed numbers of independent golden eagle locations in each of 10 equal-interval bins of relative intensity of

use.

https://doi.org/10.1371/journal.pone.0297345.g005
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Surface management

The largest amount of predicted high-use habitat (top 10% and 20% quantiles) occurred on

private lands (55%), followed by BLM (24–25%), State (8%), and U.S Forest Service (USFS;

7–8%; Table 6). All public lands combined covered 38% of the study area and contained 40%

of predicted high-use areas. The amount of high-use habitat was generally proportional to the

size of surface management areas, except for BLM, which had 1.56 times more high-use habitat

Fig 6. Scatterplot of observed versus predicted numbers of winter locations of golden eagles by life-history group

among each of 10 equal-interval bins of relative intensity of use for the 25% of locations (n = 8,829) withheld from

the model training.

https://doi.org/10.1371/journal.pone.0297345.g006

Table 4. Area-adjusted frequencies (AAF) and ranks of winter locations of golden eagles by life-history group among each of 10 equal-interval bins of relative inten-

sity of use for the 25% of locations (n = 8,829) withheld from the model training.

Bin Adult Migrant Adult Non-Migrant Non-Adult Migrant Non-Adult Non-Migrant

AAF Rank AAF Rank AAF Rank AAF Rank

1 0.077 2 0.018 1 0.037 1 0.000 1

2 0.060 1 0.053 2 0.140 2 0.241 3

3 0.186 3 0.128 3 0.536 3 0.235 2

4 0.412 4 0.298 4 0.712 4 0.458 4

5 0.794 5 0.564 5 1.015 5 0.711 5

6 1.154 6 1.048 6 1.518 6 1.080 6

7 1.980 7 1.602 7 1.775 7 1.581 7

8 2.765 8 3.093 8 1.823 8 2.409 8

9 4.989 9 6.456 9 2.159 9 5.485 9

10 9.890 10 15.049 10 6.006 10 12.376 10

R2 (Boyce Index) 0.976 1.000 1.000 0.976

AAF magnitude of difference 129 854 162 51*

The correlation of the bin ranks (Boyce Index) indicates the extent to which the distribution of test locations differed from random expectation under the model’s

predictions. The AAF magnitude of difference indicates the discriminative ability of the model for each group.

* Ratio of bins 10:2 because no locations were in lowest bin.

https://doi.org/10.1371/journal.pone.0297345.t004
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than expected based on area, and State lands, which had 1.6 times more high-use habitat than

expected.

Table shows the percentage of the study area covered by each surface management entity,

and the percentage of the top 20% and 10% quantile bins of predicted intensity of use occur-

ring in each area. The observed:expected column (calculated as the ratio of the percentage of

the top 10% of habitat to the percentage of the study area) shows surface management catego-

ries with more (>1) or less (<1) high-use habitat than expected based on their areal extent.

Discussion

We developed a predictive distribution model for the wintering golden eagles in a region of

the western U.S. that is critical to the conservation of the species in North America. This study

fills an information gap by focusing on golden eagles not associated with the nesting habitat of

territorial residents, which was historically the focus of modeling and mapping to support hab-

itat conservation efforts [9, 10]. Specifically, our work complements available models and

maps of nesting habitat by predicting relative intensity of winter use by all age classes of long-

distance migrants and resident eagles not associated with nesting territories, including sub-

adults and adult “floaters”, and movements of adult territory holders and their offspring out-

side their breeding home ranges. Similar analyses to support broad-scale spatial prioritization

of raptor habitat (e.g., to reduce mortality at wind energy facilities) have been conducted in

North America [9, 10] and Europe [46–48]; however, we are not aware of any that have incor-

porated all relevant life-history groups and seasons.

The need to account for winter use areas in conservation and management decisions for

golden eagles is underscored by the relatively low degree of spatial overlap between the areas

high-intensity winter use predicted by our model and high-density breeding areas from avail-

able models of nesting habitat [10]. We found that the distribution of areas with highest rela-

tive intensity of winter use by golden eagles varied among ecoregions, resulting in an uneven

distribution across our study area, and corresponding opportunities to increase conservation

efficiency by using our model’s predictions to target management and mitigation actions in

areas where they could be expected to provide the greatest benefit.

The low degree of spatial overlap of the predicted high-use winter areas with predicted

high-use breeding (Table 5 and Fig 7) strongly suggests that conservation actions focused only

on local nesting habitat would not be adequate for population-level conservation of golden

eagles. Within the ecoregions of the nesting models, the top 20% of area overlapped by 35–

50% and the top 10% of area overlapped by only 23–41%, suggesting a conservation strategy

targeting highly ranked areas for either nesting or winter would capture as much as half and as

little as one quarter of high-value areas for the other season. Thus, management practices that

focus on nesting habitat of resident golden eagles (e.g., stipulations for spatial-seasonal restric-

tions to surface development and activity around nest sites) would fail to protect a significant

number of golden eagles that spend the winter in our study area. That includes long- and

short-distance migrants (including breeding adults from outside our study area), resident

adult and sub-adult eagles without nesting territories, and adult territory holders and their off-

spring outside their breeding territories. Conservation efforts that focus on the resident breed-

ing adult segment of the population often are justified by demographic analyses that identify

adult survival as the most important driver of golden eagle population persistence [49, 50].

However, long-term stability of other demographic rates is also critical [51] and our results

suggest that efforts to conserve resident breeding adult eagles by targeting conservation plan-

ning, risk assessment, and mitigation strategies mainly on nesting areas would fail to cover at

least half of the areas that are used by the large numbers of adult golden eagles that migrate
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from Alaska, Canada, and other areas to winter in our study area. Our model can be used in

concert with available models of nesting habitat to identify priority areas of winter use not cov-

ered by the conservation umbrella of nesting habitat.

The concentration of wintering habitat differed among land surface management catego-

ries, suggesting that some government agencies and entities have a disproportionate responsi-

bility for conservation of golden eagle habitat in our study region. The governmental agency

with the most habitat was BLM, followed by State agencies; however, private lands had both

Fig 7. Overlap of winter and nesting habitat for golden eagles in Wyoming, USA, and surrounding ecoregions. The predicted relative intensity of

use from the winter-season golden eagle distribution model with relative nesting territory density from the ecoregional nesting habitat models of Dunk

et al. [10]. Map shows the top 20% area for both models, with areas of overlap (green), winter only (blue), nesting only (yellow), and ecoregions (black

outlines). Percent overlap and correlation within each ecoregion are shown in Table 5. Ecoregion data from the Commission for Environmental

Cooperation [20] as modified by Dunk et al. [10], state boundaries from U.S. Census Bureau [21], and terrain base map modified from National

Hydrography Dataset [22].

https://doi.org/10.1371/journal.pone.0297345.g007
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the largest total amount of winter habitat and the most high-quality habitat (55%; Table 6).

This highlights the importance of public-private collaboration in efforts to conserve winter-

season habitat for golden eagles. The concentration of winter habitat on private lands also has

implications for avoidance and mitigation of hazards to golden eagles, specifically from wind

energy development, which has thus far occurred largely on private and non-Federal govern-

ment lands within our study area, where it is not subject to the environmental review processes

required for federally managed lands.

We expected relative intensity of use by golden eagles to vary regionally across our large

study area and our modeling approach accounted for the influence of ecoregions. While our

geographic model evaluations showed some spatial variation in model performance among

subregions, overall performance was excellent among the larger ecoregions, suggesting high

confidence in applying the models at that scale (Fig 4). Model performance was lowest for the

Forested Montane ecoregion and more variable for the smaller subregions. Overall, grid-based

evaluations showed strong concordance between predicted and observed quartiles, but that

the concordance decreased with decreasing cell size. Nonetheless, the majority of prediction

errors were relatively minor (one quartile), and the best predictions were in both the lowest

and highest quartiles. The grid assessment provides an extra level of transparency for applying

the model to management decisions and suggests that a greater degree of caution should be

used for finer-scale actions (S4 Fig).

Our primary goal was to predict spatial variation in relative intensity of winter use by

golden eagles, but the variables and predictions of the final model (Table 3) also provided

Table 5. Correlation and overlap of predicted relative intensity of use from the winter model with relative nesting

territory density from the ecoregional nesting habitat models of Dunk et al. [10].

Ecoregion Rank Correlation Overlap of upper quantile areas

(%)

Top 20% Top 10%

Forested Montane 0.44 34.8 23.0

Intermontane Basins and Valleys 0.51 50.0 40.7

Northern Great Basin 0.53 45.0 31.5

Northwestern Plains 0.55 48.1 38.6

Southwestern Plains 0.29 45.9 40.5

Wyoming Basin, Uinta Basin, and North Park 0.37 40.1 32.7

Table shows the Spearman rank correlation of the models by ecoregion for the full area of overlap, and the

percentage of overlap for areas in the top 20% and 10% quantile bins for each model.

https://doi.org/10.1371/journal.pone.0297345.t005

Table 6. Percentage of predicted high-use winter habitat for golden eagles by surface management entity.

Surface Management Entity Percentage of Study Area Percentage of High-Use Habitat Observed: Expected Ratio

Top 20% Top 10%

Private 53% 55% 55% 1.04

Bureau of Land Management 16% 24% 25% 1.56

U.S. Forest Service 14% 8% 7% 0.50

Tribal 7% 4% 4% 0.57

State 5% 8% 8% 1.60

Other 2% 1% 1% 0.50

National Park Service 2% <1% <1% 0.17

U.S. Fish and Wildlife Service 1% <1% <1% 0.18

https://doi.org/10.1371/journal.pone.0297345.t006
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insights into the seasonal ecology of the species in our study region. Golden eagles exhibit

multi-scale selection of nesting habitat (e.g., [10, 52]) and our results suggest that winter use is

also influenced by environmental conditions at a range of spatial scales (120 m to 6.4 km,

Table 3). Meteorological conditions conducive to soaring flight are known to influence migra-

tory movements of golden eagles [53] and the large contribution of wind and uplift indices to

our model suggests that flight subsidies also influence habitat selection during winter. While

many recent studies have focused on the influence of flight subsidies on migratory movements

at fine temporal scales (e.g., [54, 55]), our results were more similar to studies of breeding habi-

tat selection [10, 19], which have shown that golden eagles in more sedentary stages of their

life-cycle also select areas with long-term average wind and orographic uplift conditions favor-

able to flight. Our study confirms the importance of flight subsidies as a component of winter

habitat for golden eagles, building upon previous winter-season studies that inferred the

importance of wind and uplift from topographic variables [56–59]. Taken together, these

results suggest long-term wind and uplift conditions influence habitat selection for all life-his-

tory groups of golden eagles year-round, which has implications for siting of permanent haz-

ards, especially wind energy projects, strings of wind turbine generators, and perhaps even

individual wind turbine generators. The vegetation and land-cover variables in our model

were also broadly consistent with other studies of winter-season habitat selection by golden

eagles in the western U.S., which found strong positive associations with tall sagebrush and

shrubland vegetation, and other variables potentially representative of prey habitat, and some

evidence for avoidance of agriculture [56, 59]. By contrast, an analysis of subadult winter habi-

tat selection in the Great Basin found higher winter use in mid-elevations, with more use of

ridges, in shrub and woodland areas, closer to roads and powerlines, and at lower median

wind classes [60].

Our model made accurate predictions of the relative intensity of use by golden eagles dur-

ing winter among ecoregions, ecological subregions, and smaller areas (30x30- and 15x15-km

grid cells), suggesting that it worked well throughout our entire study area. Our extensive eval-

uation process provides a high degree of confidence in the ability of the model to make accu-

rate predictions, as well as transparency in the differences in performance that existed among

geographic subregions and golden eagle life-history groups. The model’s performance with an

independent GPS telemetry dataset provided further confidence in the intended application

for spatial prioritization of conservation and management actions to benefit golden eagle

populations.

Our single model achieved our objective to accurately predict relative intensity of winter

use for all four golden eagle life-history groups included in our study (Table 4 and Fig 6). The

differences in predictive performance we observed among groups were consistent with our

expectations of golden eagle behavior and ecology. Adult non-migrants exhibited the strongest

selection (indicated by greatest AAF ratio), which supported the hypothesis that older and

more experienced individuals that reside in the study area year-round would be most selective

of habitat. This aligned with evidence that adult resident golden eagles in Idaho actually

increased their strength of selection during winter to target prey habitat within their expanded

winter-season home ranges [61]. Strength of selection by migrant adults and non-adults was

similarly moderate, which was consistent with our expectation that migrants and younger

individuals not tied to breeding territories would demonstrate a lower degree of discrimina-

tion in habitat selection than resident breeders. As expected, non-adult non-migrants exhib-

ited the lowest strength of selection. In our dataset, this life-history group comprised locations

of sub-adult eagles outside their natal territories, which we expected to be the most variable,

exploratory, and difficult to predict among the groups in our study [57, 62]. Nonetheless, our

model was still able to rank their use nearly perfectly (Boyce Index = 0.976). Although we did
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not expect that our model trained on daytime use locations would also be effective at predict-

ing use of nocturnal roosts, it still made quite accurate predictions (S5 Fig). This contrasts with

examples from our study area of golden eagles leaving open habitats to roost communally in

montane forests with Bald Eagles (Haliaeetus leucocephalus [63]). However, we expect our

telemetry dataset to be more representative of the average behavior of the population, for

which nocturnal roosting habitat appears to be similar overall to areas used during daytime.

Conservation applications

Given the broad distribution and array of human-caused threats to golden eagles, our results

suggest that long-term conservation of the species in North America will be most effective if it

relies on proactive measures informed by spatial prioritization of high-use areas for all seg-

ments of the continental population in all seasons. The importance of a broad-scale, year-

round approach to conservation for golden eagles is evident in our case study of Wyoming

and surrounding ecoregions, where large numbers of migrant golden eagles augment the resi-

dent population during winter, thereby increasing the number of individuals exposed to haz-

ards. Our winter-season distribution model provides a tool for all the parties engaged in

conservation of golden eagles to identify variation in the intensity of habitat use during winter

by segments of the population heretofore under-represented or ignored in conservation plan-

ning. The model is publicly available for viewing and download in a web-based mapping and

decision support tool at www.raptormapper.com.

Our results suggest that successful conservation of golden eagles in our study region

(regardless of migration status, age class, or breeding status) would benefit by including

important winter habitat areas. The predictions from our model show that the winter-season

habitat in our study area has only low-to-moderate overlap (23–50%) with nesting habitat.

Moreover, areas of high-use winter habitat occur primarily in low-elevation basins and valleys

that often have more human presence, private land, and development, all of which may

increase the likelihood that wintering golden eagles are exposed to anthropogenic hazards

such as wind turbine strikes, vehicle collisions, electrocution, and illegal shooting.

Our model can be used to maximize the efficiency of conservation efforts by targeting them

in areas where they will provide the greatest benefit to golden eagles. For example, the top 10%

of winter habitat value in our study area was predicted to have over 13 times greater relative

intensity of use than average and 30 times greater than areas in the bottom 10% of use. More-

over, these high-use areas comprised a relatively small proportion of the landscape: the top

10% of habitat value occurred in only 0.3% (2,775 km2) of the study area and the top 50% of

value in 1.5% (11,953 km2) of the area. We are not suggesting that limiting management efforts

to such a small area would be sufficient to conserve wintering golden eagle populations. How-

ever, prioritization of management actions within this relatively small percentage of the land-

scape would be expected to provide greatly disproportionate conservation benefits (i.e.,

“precision conservation”).

Risk of mortality or injury to golden eagles from human-caused hazards can be conceptual-

ized as a function of the intensity of a hazard, exposure of eagles to that hazard, and the degree

of vulnerability of the individuals exposed [64, 65]. Our model predicts intensity of use by

eagles, which is a measure of the exposure component of risk, but does not account for vulner-

ability. In some cases, pairing broad-scale models of exposure, similar to ours, with spatial data

on hazards has been demonstrated to be a good predictor of overall risk (e.g., electrocution of

golden eagles in the northwestern Great Plains [65]). However, exposure to a hazard may not

necessarily correspond to the level of risk eagles face because their vulnerability may be influ-

enced by other intrinsic (e.g., age, sex) and extrinsic (e.g., weather, season) factors that affect
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eagle behaviors such as flight altitude and foraging mode [66, 67]. Until the effectiveness of our

model at predicting risk has been evaluated for specific hazards, we suggest that it be used for

landscape-level conservation planning, and as an index of risk when formal risk assessments

for specific threats are not available. To that end, we recommend using locations of eagle mor-

talities from known hazards (e.g., wind turbine strike, electrocution) to formally evaluate the

ability of our model to predict risk. We developed our model to enable all parties involved in

conservation and management of golden eagles to incorporate spatial prioritization of winter-

ing habitat into decision making. Specific applications of our model results to existing decision

making processes and tasks include:

1. Siting of wind energy developments as part of the “Stage 1” evaluation process described in

the U.S. Fish and Wildlife Service (USFWS) Eagle Land-Based Wind Energy Guidelines,

which state that “project developers should . . . evaluate broad geographic areas to assess the

relative importance of various areas to resident breeding and non-breeding eagles, and to

migrant and wintering eagles” [emphasis added] [17]. For example, our model could be

used to compare relative intensity of use by wintering eagles (exposure) among multiple

potential wind energy development sites and quantify the relative risk associated with each

site. Use of a consistent model framework would also facilitate review of the resulting devel-

opment proposals by USFWS Office of Migratory Bird Management for compliance with

the Bald and Golden Eagle Protection Act.

2. State-level planning, review, and permitting of wind energy and other developments. For

example, the State of Wyoming’s Natural Resource and Energy Explorer (NREX), a web-

based development pre-planning map tool, currently includes only golden eagle nesting

areas [68]. Our model could be used to incorporate priority wintering areas into this and

other State-level planning tools and assessments.

3. Review and consultation on a wide range of land development projects by USFWS Ecologi-

cal Services Program. For example, the Wyoming Ecological Services Field Office Raptor

Guidelines state that “protection of nesting, wintering (including communal roost sites),

and foraging activities is considered essential to conserving raptors” [emphasis added] [69].

Our model could be used to incorporate relative intensity of winter use by golden eagles

into project review and consultation, and to identify opportunities for eagle conservation

incentives.

4. Land-use planning by Federal agencies. Our model now represents the best-available sci-

ence on winter-season habitat use by golden eagles in our study area and could thus be con-

sidered in updates to land management plans (i.e., USFS Forest Plans and BLM Resource

Management Plans), planning documents such as Environmental Impact Statements (EIS)

and Environmental Assessments (EA) under the National Environmental Policy Act, and

guidance on Best Management Practices. For example, model results could be used to com-

pare potential impacts to eagles among alternative off-highway vehicle route locations, or in

broad-scale transportation management analyses. Because our model results are publicly

available, they further support the NEPA process by enabling public review of data and

analyses underlying agency decisions.

5. Incorporation into other landscape prioritization initiatives and tools. Our models could

represent golden eagle habitat in other spatial prioritization efforts by governmental and

non-governmental organizations, for example the USFWS Sagebrush Conservation Design

[70], BLM Restoration Landscapes [71], and The Nature Conservancy Wyoming Bright-

fields Energy Siting Initiative map tool [72].
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6. Mitigation. Our model could be used to improve the efficiency of mitigation actions by

targeting them in areas with greater golden eagle exposure, until such time as risk assess-

ments are available that account for vulnerability to specific hazards. For example, miti-

gation of take from turbine strikes through power pole retrofits to prevent electrocution

could be more efficient if implemented in areas of high eagle use, as demonstrated in

Bedrosian et al. [65].

7. Proactive conservation measures. Our model could be used to target proactive conservation

measures in areas with greater intensity of use by golden eagles; particularly to address haz-

ards where risk may reasonably be assumed to be correlated with eagle density. For exam-

ple, our model could be used to identify areas where golden eagles have greater exposure to

vehicle strikes [15] and target management actions, like removing carcasses from roadways,

or programs to reduce exposure to lead (Pb) from ammunition in gut piles of hunter-har-

vested big game animals, distribution of lead-free ammunition, removal of gut piles, and

incentives for private landowners to require the use of lead-free ammunition.

8. Purchase of conservation easements and lands. For example, our model could be used to

assess the value of potential conservation easement or land purchase areas to wintering

golden eagles. Although most easements are motivated by conservation objectives for other

species or values, our models could be used to quantify and compare their additive benefits

to eagles. Given the scale of the model predictions and data, performance of our model is

expected to be best at spatial resolutions� 1 km2. We emphasize that the model provides

an index of relative intensity of use within the extent of our study area and does not address

the quality or importance of this area relative to regions outside our study area. However,

we further emphasize that multiple other studies and sources of evidence suggest that our

study area constitutes a continentally important area for golden eagles [11, 19]. Thus, areas

where our model predicted relatively low intensity of use may still be used by golden eagles

and represent relatively high-use habitat if compared to areas outside our study area.

Supporting information

S1 Fig. Modeling areas and data for analysis of golden eagle wintering distribution. Map

shows training (blue) and test (red) locations in the modeled area (white) where 100,000 ran-

dom background locations (not shown) were located. The model predictions were projected

to the buffered study area (dark gray). State boundaries from U.S. Census Bureau [21] and ter-

rain base map modified from National Hydrography Dataset [22].

(TIF)

S2 Fig. Marginal response curves and relative contributions (% contrib.) for covariates

included in a model of winter-season distribution of golden eagles in Wyoming and sur-

rounding ecoregions. Covariates are defined in Table 3 and S1 File.

(TIF)

S3 Fig. Scatterplots of predicted versus observed numbers of golden eagle winter locations

among 10 equal-interval bins of relative intensity of use within 15 ecological subregions.

Subregion codes are Bear Lake (BELK), Belt Mountains (BEMT), Bighorn Basin (BIBA), Cen-

tral Basin and Hills (CEBH), Central High Plains (CEHP), Green River Basin (GRRB), Inter-

montane Basins and Valleys (IMBV), Missouri Plateau (MIPL), North Central Highlands

(NOCH), Powder River Basin (PORB), Mid. and N. Rockies, Columbia and Blue Mtns., and

Idaho Batholith (RCBI), Southern Rockies (SORO), Uinta Basin and North Park (UBNP),

Western Great Plains North (WEGPN), Western Great Plains South (WEGPS). Subregion
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data from U.S. Forest Service [42] and state boundaries from U.S. Census Bureau [21].

(TIF)

S4 Fig. Spatial evaluation of model predictions. Binned differences between predicted versus

observed numbers of golden eagle locations in 30x30-km grid cells overlapping the modeling

area for the 25% of locations (n = 8,829) withheld from the model training. Legend shows

accuracy categories with matching bin ranks classified as accurately predicted and differences

of 1–3 quartiles as low, medium, and high levels of over- or under-prediction. Counts of cells

in each category are shown in parentheses. Table shows the proportions of quartile bin ranks

of the test data within each quartile bin of predicted values. Outline of the study area and the

state of Wyoming are shown as black lines. Cells with no test data are transparent. State

boundaries from U.S. Census Bureau [21].

(TIF)

S5 Fig. Scatterplot of predicted versus observed numbers of golden eagle winter nocturnal

roost locations by life-history group among each of 10 equal-interval bins of relative inten-

sity of use.

(TIF)

S1 Table. Organizations contributing golden eagle telemetry locations to the dataset used

to model winter season distribution in Wyoming, USA and surrounding ecoregions.

(PDF)

S1 File. Candidate predictor variables.

(XLSX)

S2 File. Study area description and justification.

(PDF)
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