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Abstract

In order to contribute to conservation planning efforts for golden eagles (Aquila chrysaetos)

in the western U.S., we developed nest site models using >6,500 nest site locations through-

out a >3,483,000 km2 area of the western U.S. We developed models for twelve discrete

modeling regions, and estimated relative density of nest sites for each region. Cross-valida-

tion showed that, in general, models accurately estimated relative nest site densities within

regions and sub-regions. Areas estimated to have the highest densities of breeding golden

eagles had from 132–2,660 times greater densities compared to the lowest density areas.

Observed nest site densities were very similar to those reported from published studies.

Large extents of each modeling region consisted of low predicted nest site density, while a

small percentage of each modeling region contained disproportionately high nest site den-

sity. For example, we estimated that areas with relative nest density values <0.3 repre-

sented from 62.8–97.8% (�x = 82.5%) of each modeling area, and those areas contained

from 14.7–30.0% (�x = 22.1%) of the nest sites. In contrast, areas with relative nest density

values >0.5 represented from 1.0–12.8% (�x = 6.3%) of modeling areas, and those areas

contained from 47.7–66.9% (�x = 57.3%) of the nest sites. Our findings have direct applica-

tion to: 1) large-scale conservation planning efforts, 2) risk analyses for land-use proposals

such as recreational trails or wind power development, and 3) identifying mitigation areas to

offset the impacts of human disturbance.

Introduction

The information needed to support effective conservation planning includes an understanding

of how a species’ distribution, abundance, and demography vary with spatial heterogeneity in

natural and anthropogenic features of its environment. At one end of the information spec-

trum, the distinction between a species’ area of occupancy (where it actually occurs within its
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geographic range) and its extent of occurrence (its geographic range; [1]) could identify areas

where conservation efforts should be focused. Toward the other extreme, understanding how

a species’ demography varies with habitat heterogeneity greatly aids in the identification of

important areas and habitats for conservation, and enables modeling of the consequences of

conservation actions (or inaction; e.g., [2, 3]). For many species of concern, however, demo-

graphic information (e.g., birth and survival rates) is not available and conservation planning

must rely on indirect proxies of fitness including occurrence and abundance. Habitat selection

theory suggests that territorial species should conform to the ideal despotic distribution (IDD;

[4]), under which individuals select the highest suitability area that is currently unoccupied,

and that the resulting distribution of territorial individuals is one where the highest suitability

areas have higher densities of individuals and lower suitability areas have lower densities.

Experimental and empirical evidence have generally supported the IDD theory [5, 6], includ-

ing studies on raptors that have found an inverse relationship between territory size and prey

abundance [7–10]. Thus, in the absence of data on how fitness varies with habitat for territorial

species, variation in the density of territorial individuals can be interpreted as a proxy for spa-

tial variation in habitat quality.

Using density as a proxy for habitat quality may be especially valuable in conservation plan-

ning for species with broad geographic ranges encompassing heterogeneous environments.

For such species, it is unusual to have demographic information from multiple populations

occupying different ecological settings (see [11] for an exception). This circumstance necessi-

tates analyses and modeling with more readily available data on species occurrence and the

relationships between location data and environmental covariates. To be useful for manage-

ment and conservation, the resulting models must explicitly incorporate regional variation in

habitat suitability.

These challenges are exemplified by conservation planning efforts for golden eagles (Aquila
chrysaetos) whose breeding populations in western North America span diverse ecosystems

from coastal woodlands and temperate forests to sagebrush steppe and southwestern deserts

[12]. Golden eagles are large-bodied apex predators that occupy large but variable breeding

home ranges (10s ->3,000 km2; [13]), and territories tend to be sparsely distributed at land-

scape scales. However, territory density can be relatively high (>6 territories/100 km2 [14]) in

localized areas with abundant nest substrates and prey populations. Breeding territories typi-

cally contain multiple nests and support long-term occupancy across multiple generations of

golden eagles [15].

In contrast to the relative stability of breeding distributions, golden eagles exhibit a wide

variety of intra- and inter-annual movement patterns throughout the annual cycle. For exam-

ple, populations occupying northern latitudes migrate 1,000s of km between breeding and

wintering areas [16, 17], while more southerly populations tend to be resident [12]. Even

within resident populations, sub-adult golden eagles (2–4 years of age) may exhibit wide varia-

tion in dispersal distances ranging from 10s ->1,000 km [18]. The combination of resident,

migratory and dispersing individuals may result in high seasonal variation in the density and

composition of golden eagles occupying a given landscape.

As a consequence of their protected status under the Bald and Golden Eagle Protection Act

(Eagle Act; 16 U.S.C 668-668d) and potential and actual threats to their populations, golden

eagles have received substantial attention from both regulatory agencies [19] and researchers

[20]. Golden eagle populations in the western U.S. are stable or slightly decreasing [19, 20], but

there is growing concern that increased energy development and land-use change may result

in significant future population declines. Threats such as lead poisoning, electrocution, habitat

modification/loss, energy development (especially wind energy), and outdoor recreation have

long been known or suspected to impact golden eagle populations [19, 21–26]. However, the

Golden eagle nest site density model
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extent to which these factors, individually or in concert, influence overall golden eagle popula-

tions is uncertain. Strategies for managing or reducing such threats require both spatial data

on the distribution of hazards (e.g., electrocution risk or lead poisoning) as well as spatial data

on the distribution and abundance of golden eagles [27].

Due to the extensive areas required for persistence of golden eagle populations, and myriad

threats to their populations, conservation planning for eagles requires planning at broad spatial

scales. Population management objectives codified in regulations implementing the Eagle Act

require management actions to be “consistent with the goals of maintaining stable or increas-

ing breeding populations in all golden eagle management units and the persistence of local

populations throughout the geographic range of each species” (Eagle Permits; Revisions to

Regulations for Eagle Incidental Take and Take of Eagle Nests, 81 C.F.R Sect. 91494). A key

feature of maintaining or increasing any population is protection of breeding areas. Thus,

motivated by the Eagle Act’s requirement to maintain local and regional populations, we mod-

eled the relative density of golden eagle nest sites (hereafter, relative nest site density [RND]) at

the scale of large ecological regions (range = 87,288–711,384 km2) to account for broad-scale

spatial heterogeneity in habitat relationships in the western U.S.

Data describing golden eagle breeding sites in the western U.S. are routinely collected by

land management agencies, researchers, and energy developers during the course of project

planning. These data are often collected opportunistically (i.e., without a formal sampling

design; but see [28, 29]), limiting their application in presence-absence analysis designs. Pres-

ence-only (or presence-available) species distribution models (SDMs), however, have become

powerful and popular tools for evaluating species-environment relationships (e.g., [30]). Pres-

ence-only models allow for analyses of opportunistically collected data such as museum rec-

ords, citizen science observations, and monitoring data collected by land management

agencies. Importantly, absence data are generally not recorded during these surveys. Conserva-

tion planning entails making decisions in the context of incomplete information [31], and

presence-only models can provide insights into species-environment relationships that are

more informative than location data alone [32–34]. However, the utility of a model based on

uncertain or incomplete data depends on its validity and an understanding of its limitations.

MaxEnt [35] is one of the most popular software packages for modeling presence-only data,

having been cited >10,000 times (Google Scholar, https://scholar.google.com, accessed 23 Aug

2019). The MaxEnt model algorithm, based on presence-available data, performs identically to

fitting an inhomogeneous Poisson point process model [36–39]. As a result, model output can

be interpreted as a measure of relative density [40] of the modeled events (e.g., individuals,

den sites, rest sites, nest sites), and estimates provided from such models are proportional to

event density [41]. Because it is referenced to area, relative density is a more accurate descrip-

tion of the modeled events. Using some simple transformations developed by Boyce et al. [42],

we show how MaxEnt output can be used to estimate the magnitude of differences in density

of modeled events among areas even when absolute density is unknown. These transforma-

tions provide a clear ecological interpretation of MaxEnt’s output, and improve the utility of

predictions for conservation and management applications.

SDMs are often used to identify locations within the modeled landscape that have par-

ticularly high suitability or likelihood of occurrence values. Such areas may be subse-

quently prioritized for protection or other conservation action [3, 43, 44]. Similarly, SDMs

can also be used to identify landscape locations that have low values where conservation is

not prioritized and where development may be incentivized [45]. For species of conserva-

tion concern, often a relatively small percentage of the landscape within the species’ range

contains the majority of the individuals/nests/dens in that landscape [3, 46, 47]. In such

Golden eagle nest site density model
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cases, relatively modest conservation actions (e.g., restrictions on allowable land uses) tar-

geted to these areas may result in very large conservation benefits (e.g., [27]).

We developed and evaluated RND models to serve as a foundation for golden eagle conser-

vation planning in the western U.S. Our findings have a number of direct applications relevant

to golden eagle conservation including land management planning by federal, state and tribal

agencies, evaluation of land-use proposals by regulatory agencies, and decision support for

energy developers. Model results can support quantitative risk assessments for a variety of

potential risks, including energy development (both renewable and conventional; [45]), elec-

trocution [27], wildland fire, lead poisoning, andvarious land management decisions. Our

research goals were to develop models that: 1) could accurately predict the relative density of

golden eagle nest sites; 2) were well-calibrated (i.e., the prediction of RND is accurately scaled

to observed nest density rather than “simply” discriminating nest sites from non-nest sites); 3)

were scaled to reflect the spatial scale at which golden eagles respond to variation in habitat

features; 4) could assess habitat use patterns at spatial scales relevant to both potential threats

and management actions; 5) were robust (i.e., not over- or under-fit to the data that are used

to train the models) and generalizable to the extent of the modeled landscape; and 6) could be

used to inform a wide variety of management/conservation actions.

Materials and methods

Study area

Our study area corresponds to the extent of the golden eagle’s breeding range within the con-

terminous U.S., roughly west of the 100th meridian (Fig 1). We initiated data collection based

on the breeding range provided by Kochert et al. [12], and subsequently modified the eastern

boundary based on the distribution of nest records and associated habitat features. The study

area consists of multiple distinct ecological regions, ranging from southwestern deserts and

sagebrush-dominated interior basins to the Rocky Mountains and Great Plains.

Regional models: Partitioning the golden eagle’s range

We incorporated regional variation in environmental attributes into our modeling process by

partitioning the golden eagle’s range in the western coterminous U.S. into 12 discrete model-

ing regions (Fig 1) and developing models separately for each region (see [37, 45]). We based

our modeling regions on Level III Ecoregions established by the North American Commission

for Environmental Cooperation (CEC) [48]. Ecoregions differ broadly in terms of vegetation

composition, edaphic conditions, landform, and climate. Given the wide range of habitat types

throughout our study area, we expected patterns of golden eagle habitat use to be more similar

within than among Ecoregions. For example, the majority of golden eagles in the California

Coastal Sage, Chaparral and Oak Woodlands Ecoregion nest in oak woodlands and forage pre-

dominantly for California ground squirrels (Otospermophilus beechyi) in annual grassland

habitats [14]. In contrast, golden eagles nesting in the Central Basin and Range Ecoregion rely

on hares and rabbits (Family Leporidae) in sagebrush habitats and typically build nests on cliffs

and rocky outcrops [12, 49]. Fitting a single SDM across such heterogeneous regions would

likely result in an overly general model that would fail to identify region-specific environmen-

tal relations and have poor predictive ability in any given region.

We adjusted CEC Ecoregion boundaries, and in some cases combined Ecoregions or por-

tions of Ecoregions, to improve the alignment of modeling region boundaries with habitat gra-

dients (e.g., sagebrush cover) important to golden eagles and their prey. We also masked the

modeling regions to exclude areas with features that were not suitable golden eagle habitat

Golden eagle nest site density model

PLOS ONE | https://doi.org/10.1371/journal.pone.0223143 September 30, 2019 4 / 31

https://doi.org/10.1371/journal.pone.0223143


(e.g., large bodies of water and playas). Overall we developed and evaluated models within 12

modeling regions (Table 1; Fig 1).

Compiling nest data, sample selection process

We acquired data describing golden eagle nest locations by contacting groups and individuals

that collected and maintained such data, including state, federal, tribal, and non-governmental

organizations. We solicited all available nest records with locational accuracy <120 m. Because

terminology used to describe nest status in the data was inconsistent, we reclassified nest status

as “In-Use,” (direct observations of behavior indicative of a nest containing eggs), “Occupied”

(documented presence of an adult pair or sign of recent nest repair or use, “Unoccupied”

(adult eagles not observed), or “Unknown” [50, 51]. Only In-Use or Occupied nest sites were

used in modeling.

A “presence” datum in our dataset was an individual golden eagle nest site supporting an

“occupied” or “in-use” nest. However, the initial dataset included many spatially and

Fig 1. Geographic extent of study area with boundaries of modeling regions (1–12) shown in colored fill and

projection regions (13–15) with crosshatch.

https://doi.org/10.1371/journal.pone.0223143.g001
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temporally replicated nest locations due to data redundancies and as a consequence of golden

eagle pairs often maintaining multiple nests within their territory, with only one being used in

a given year [15]. To address redundancies, we used a hierarchical selection algorithm [45] to

thin spatially clustered nest locations into one nest site based on: 1) the most recent observa-

tion of a nest with the highest level of nest status (e.g., In-Use> Occupied); and 2) imposing a

3-km threshold (thinning) distance between nests based on typical nearest-neighbor distances

and core-use area size [12, 52]. Restricting nest sites included in our data set to those >3-km

apart reduced over-representation of intensively surveyed areas where golden eagle territories

were very closely spaced (e.g., Central California Coast Ranges; [29] and the Snake River can-

yon in southwestern Idaho; [53]).

Early in the process of compiling nest location data, it became apparent that large portions

of some regions had few or no survey records. To address these apparent data gaps, we worked

directly with research institutions and state agencies to conduct targeted surveys for golden

eagle nest sites in portions of Texas, Oklahoma, Kansas, Colorado, New Mexico, Utah, Ari-

zona, Montana and Idaho, resulting in 314 additional nest sites.

Conceptual model: Expert elicitation and literature review

The behavior and general ecology of golden eagles are well known, but most studies of breed-

ing habitat selection have been short-term and conducted in relatively small study areas. As a

result, our understanding of the environmental features associated with nest site selection at

local and landscape scales, and the geographic variation in nesting habitats, is incomplete. To

derive an initial set of candidate variables, we reviewed the published literature on the breeding

ecology of golden eagles, including habitat use patterns, and solicited expert input from biolo-

gists familiar with golden eagle nesting behavior within each modeling region. Given our goal

of fitting models comparable across regions, we restricted candidate variables to those available

throughout all modeling regions. One limitation of this approach, for example, was that data

on the distribution and abundance of important prey of golden eagles were omitted because

they were not available for all regions. Some variables were proxies for unmeasured factors

Table 1. Characteristics of sample size of golden eagle nest sites and modeling regions used for developing golden eagle nesting area models in the western U.S. Ini-

tial number of nests is the full sample of nests we had available to us and that passed our quality control process. Number of thinned nest sites is the sample of nest

sites used for model development, after we thinned the initial sample to reduce the chance of pseudoreplication. Modeling region size is total size of modeling region,

whereas modeling area size is the union of 20-km radius circles around the thinned nest sites. Modeling area percentage of modeling region is the result of dividing the

modeling area by modeling region sizes (x 100). Number of sub-regions is the number of discrete sub-regions within each modeling region.

Modeling Region Initial number of

nests

Number of

thinned nests

Modeling region size

(km2)

Modeling area size

(km2)

Modeling area percentage of

modeling region

Number of sub-

regions

California Foothills 2,535 259 100,465 69,383 69 5

Central Basin and Range 7,018 902 321,183 250,469 78 7

Chihuahuan Desert 1,012 118 179,684 51,769 29 3

Columbia Plateau 2,057 279 118,750 63,852 54 6

Forested Montane 3,658 646 711,384 247,495 35 6

Intermontane Basins and

Valleys

482 219 87,288 60,516 69 2

Northern Great Basin 4,470 1,050 286,350 213,143 74 6

Northwestern Plains 5,150 977 474,172 274,186 58 8

Southwestern Deserts 1,151 288 251,394 119,902 48 7

Southwestern Plains 471 273 491,295 127,572 26 7

Southwestern Plateaus 1,562 604 306,872 183,734 60 5

Wyoming Basin 3,552 946 154,282 146,310 95 4

https://doi.org/10.1371/journal.pone.0223143.t001
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believed to more directly influence golden eagle behavior. The final set of variables was a com-

promise between factors hypothesized to directly or indirectly influence nest site selection

with data availability across all regions (see S1 Table for source data for variable estimates).

Modeling procedure

Each modeling region was analyzed independently. Within each region, we compiled a list of

candidate variables known or hypothesized to be related to golden eagle nest site selection.

Since we were uncertain about the spatial scale(s) at which variables most influenced site selec-

tion, we calculated the focal means and standard deviation of each variable at six spatial scales

(circular neighborhoods with radii of 120 m, 0.5, 1.0, 2.0, 3.2, and 6.4 km). This range of scales

was chosen to represent variation in environmental features hypothesized to be relevant to

golden eagle nest site selection. For example, at finer scales we could estimate local topographic

relief associated with nest substrates on cliffs, whereas at coarser scales we could estimate land

cover, terrain features and climate variation at scales likely meaningful to nesting golden eagles

through foraging habitats and prey resources.

Variable identification; variable reduction. Variables estimated for inclusion in our

models included environmental attributes such as topographic indices and landform, land

cover, climate indices, wind/uplift, vegetation productivity indices, and anthropogenic features

(e.g., agricultural and developed areas) hypothesized to affect nest site selection across ecore-

gions. To span the possible domain of environmental factors likely to affect golden eagle nest

site selection, candidate variables were initially classified into discrete categories based on what

aspect of the environment they measured (climate indices, land cover, topographic indices,

topographic landforms, vegetation indices, wind and uplift indices, development). We fol-

lowed a two-step process to identify key variables and to reduce the number of redundant vari-

ables for each region based on: 1) estimates of their degree of difference between background

and nest locations, and 2) measures of multicollinearity. At step 1, candidate variables at all

spatial scales were compared by computing the ratio of the mean nest site value to the mean

random site value (1,000 random-site locations). For a given variable, we retained the scale

with the largest ratio that had <20% of the locations with non-zero values. At step 2, we com-

puted variance inflation factors (VIF), within variable categories, for the subset of “best”-scale

variables from step one. We removed variables with VIF�4. Within any variable category, the

final set of covariates available for selection in the MaxEnt model fitting process generally had

pairwise correlations ρ such that -0.5� ρ� 0.5.

Creating the MaxEnt relative nest site density model. All MaxEnt models were fitted

using 100,000 background locations, and by evaluating linear, hinge, and quadratic functional

relationships for all covariates (referred to as features in MaxEnt). Many surveys for golden

eagle nest sites were not based on a probabilistic sampling design. As a result, many nest site

locations arose from opportunistic detections and there were extensive areas within each

region without knownnest site locations. To address this source of sampling bias, we restricted

the selection of background locations to a polygon defined by the union of all 20-km radius

circles centered on the thinned presence locations (hereafter referred to as the modeled area,

which is distinct from, and smaller than, the modeling region; see S1 Fig). Circle size was based

on the assumption that nesting golden eagles could easily access an area within a 20-km radius

area centered on the nest site. We believe that restricting the selection of background locations

in this way partially addressed potential sampling biases in the nest location data (see discus-

sion in [54]).

For each region, the initial fitted model included the complete subset of scale-dependent

covariates remaining after the variable reduction process. After evaluating this model, all

Golden eagle nest site density model
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covariates with percent contributions to the model <1.0 were removed, resulting in a reduced
model. The percent contribution of each covariate was measured in MaxEnt by the increase in

gain of the model by modifying the coefficient for that covariate [35]. This process of reducing

model complexity resulted in models that performed nearly identical to the initial models but

with many fewer covariates.

Optimizing the regularization multiplier. The default MaxEnt algorithm includes a reg-

ularization penalty parameter to reduce model over-fitting by forcing some covariate coeffi-

cients to be zero. The regularization multiplier is user-defined with a default value of 1.0.

Lower values of the regularization multiplier predispose areas with high RND to have covariate

values very similar to presence locations, whereas higher values produce a more general model

[55, 56]. Given the potential influence of this multiplier on covariate selection, we evaluated

eight different regularization multiplier values (0.1, 0.5, 0.75, 1, 2, 3, 4, and 5) and optimized

each reduced model’s regularization multiplier based on cross-validation results. We con-

ducted cross-validation, whereby each of 10 times we randomly withheld 25% of the nest sites

(with replacement) and trained the model with the remaining 75% of nest sites. In all cases, a

random sample of 100,000 background locations was used. We then evaluated the distribution

of the 25% withheld nest sites predicted to occur among 10 equal-sized RND bins (e.g., 0.0–

0.1, 0.1–0.2, 0.2–0.3 . . ., 0.9–1.0) based on the model fitted to the (75%) training data (see

below). We estimated the mean squared prediction error (MSE) between the predicted num-

ber of test nest sites occurring within each of the 10 bins relative to the observed number of

test nest sites occurring within each bin. Predicted number of nest sites within each bin was

calculated as:

NpðiÞ ¼ Nt � pAðiÞ � AAFi ð1Þ

Where:

Np(i) = Number of predicted nest sites in bin i

Nt = total number of nest sites in the test sample,

pA(i) = proportion of the area in bin i (see below), and

AAFi = area-adjusted frequency (AAF) for bin i (see below, following Boyce et al. [42]).

AAFi was computed with the training data using the following steps:

1. Compute the size (area) of the modeled area (A),

2. Partition relative habitat suitability scores (from MaxEnt output) from each cell into K,

equal-interval bins.

3. Compute the area (ai) within each bin i = 1, 2, 3, . . ., K.

4. Count the number of nest sites (ni) within each bin i.

5. Calculate AAFi as:

AAFi ¼
pNðiÞ

pAðiÞ
ð2Þ

Where:

ni = number of nests in bin i,i = 1,2,. . .,K
ai = area within bin i
N = total number of nests =

X

i

ni

A = total area of study region =
X

i

ai

Golden eagle nest site density model
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pA(i) = proportion of area in bin i =
ai
A

pN(i) = proportion of nests in bin i =
ni
N

Assuming nest sites to be randomly distributed across the modeled area—the null hypothe-

sis of no relationship with measured environmental covariates—the predicted number of nest

sites within each bin is proportional to the modeled area within a given RND bin (i.e.,

AAF = 1). Area-adjusted frequencies (AAF) were initially proposed by Boyce et al. [42] as a

method of evaluating resource selection functions. Evaluating the rank correlation of bin rank

and AAF rank (referred to as the Boyce Index by Hirzel et al. [57]) provides an assessment of

the extent to which an estimated model diverges from expectations under a null hypothesis of

a random distribution of breeding locations [42].

For each regularization multiplier value, cross-validation resulted in 100 predicted and 100

observed values (10 replicates by 10 bins), and the MSE was calculated as the average squared

difference between Np(i) and ni. We used the regularization multiplier value with the smallest

MSE to fit our final models.

Assuming a sample of N nest sites within a given region, the fitted model predicts how

those N nest sites are distributed among 10 RND bins. The difference between observed and

predicted frequencies across bins is a measure of model fit. Note that in contrast to the more

commonly reported MaxEnt output metrics (raw or logistic estimates of relative habitat suit-

ability), our estimates are interpreted as relative density. In addition, comparing AAF values

among bins can be used to estimate the extent to which nest density differs among bins.

Model evaluation with independent data. For nine regions (all except the Chihuahuan

Desert, Intermontane Basins and Valleys, and Southwestern Plateau regions), additional nest

location data became available to us after final models had been fit. This provided an opportu-

nity for model evaluation based on independent data not used in model fitting. For those

modeling regions with independent data, we evaluated the final model’s ability to accurately

predict the distribution of test nest sites among RND bins (using Eq 1) after thinning the new

nest locations so that they were� 3 km from each other and from training locations. The pre-

dicted number of nest sites in each bin requires an estimate of the proportion of area within

each of the 10 RND bins. Therefore, we centered 20-km radius circles on each of the thinned

independent nest sites and estimated the proportion of area (union of circles) in each RND

bin. We then compared the number of nest sites predicted to be in each RND bin to the actual

number occurring in each bin.

Geographic evaluation. To evaluate geographic variation in model performance, we sub-

divided each region into two to eight sub-regions (Figs in S2 Fig) based on U.S. Forest Service

Ecological Sections [58]. For each sub-region, we applied our final model to the entire modeled

area and estimated the number of nest sites predicted to occur within each of 10 RND bins

and compared those predictions to the observed number of nest sites within each bin. Esti-

mated number of nest sites within each RND bin within each sub-region was based on an

adjustment to Eq (1) as follows:

NpðiÞSRðjÞ ¼ Nt � pAðiÞ � pSRðjÞ � AAFi ð3Þ

Where:

Np(i)SR(j) = Number of predicted nest sites in bin i of sub-region j,
pSR(j) = proportion of the modeled area in sub-region j, j = 1, 2, 3,. . ., K.

The geographic evaluation of model performance within sub-regions provided insights into

the spatial variation in model performance within a modeling region. If the model performed

poorly in a particular sub-region, it would suggest that it might be reasonable to consider: 1)

developing a sub-region specific model; 2) focusing future field survey efforts in that sub-

Golden eagle nest site density model

PLOS ONE | https://doi.org/10.1371/journal.pone.0223143 September 30, 2019 9 / 31

https://doi.org/10.1371/journal.pone.0223143


region to increase the sample size of nest sites; or, 3) utilizing more nuanced considerations of

risk assessment/conservation opportunities in those areas.

Projecting models. Each model was developed and evaluated within the modeling area

and subsequently projected to the remaining area of its modeling region (Figs in S1 Fig). We

provide descriptive statistics on the proportion of the modeling region that the modeling area

represented, and the amount of modeling areas and modeling regions in each of 10 RND bins.

Projecting models outside of modeling regions. In three cases we projected models to

portions of ecoregions outside of the focal modeling region that had similar environmental

conditions (Figs in S1 Fig). This allowed us to project models to nearly all of the western U.S.

study area, including areas for which data were lacking. We projected the California Foothills

model to the California Central Valley due to the near absence of available training data, and

limited extent of potentially suitable habitat in that region. The Madrean Archipelago also had

a small sample of nest sites, and was included by projecting the Southwestern Deserts model.

Although the Uinta Basin and North Park areas likely had an adequate sample of nest sites to

generate a new model, they contained highly similar environmental conditions to those in the

adjacent Wyoming Basin region for which we had a model. We therefore projected the Wyo-

ming Basin model to the Uinta Basin and North Park. Performance of the projected models

was evaluated by comparing the number of observed nest sites to the number of predicted

(using Eq 1) nest sites in each of 10 RND bins, where observed nest sites were independent

nest locations thinned by the same criteria as the training data.

Results

We compiled 160,510 golden eagle nest records and identified 33,118 that met our criteria for

discreteness, occupancy status and spatial accuracy. After the thinning process, the presence

sample included 6,561 nest sites, ranging from 118–1,050 ((�x = 547) among modeling regions

(Table 1).

Among regions we considered 276–578 variables. After selecting the “best” scale for each

variable and conducting VIF analyses, the number of covariates evaluated in initial models

ranged from 18–34 (Table 2) among regions. Final models included from six—14 covariates

(Table 2). The most influential covariate in each region’s final model was related to terrain

steepness (mean or variation) at local spatial scales (120 m for 11 regions and 1 km for one

region; Table 3, Figs in S3 Fig). Overall, individual topographic indices covariates contributed

37.2–94.2% to fitting each full model (Table 3, Figs in S3 Fig). Additional covariates across

modeling region’s models included landcover, climate indices, wind and uplift indices, and

developed areas. Although terrain covariates weren’t identical across all modeling regions’

final models, the functional forms of the terrain covariates in each region were generally quite

similar. RND increased with increasing steepness, generally in a threshold shape with the posi-

tive influence of steepness on RND declining above moderate steepness values. Final models

for the California Foothills, Forested Montane, Intermontane Basins and Valleys, and Wyo-

ming Basin included sagebrush or grassland habitat covariates, at 0.5–6.4 km scales, as influen-

tial covariates (Table 3, Figs in S3 Fig), and in each case showed a strongly positive relationship

(linear or threshold) between RND and amount of, or variation in amount of, grassland or

sagebrush habitat. In contrast, for the Northwestern Plains’ final model, SD of cultivated crop-

land was an influential covariate (Table 3, Figs in S3 Fig), and showed an inverse and linear

relationship with RND.

The optimal regularization multiplier value varied from 0.75–6 across modeling regions

(Table 4). Because the lowest MSE for the Southwestern Plains, Southwestern Deserts, and Cal-

ifornia Foothills was found at the highest regularization value initially assessed (5), we

Golden eagle nest site density model
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evaluated those regions at multiplier values of 6 and 7. We found that the MSE increased at

higher values for the Southwestern Plains and Southwestern Deserts, but decreased for the Cal-

ifornia Foothills (Table 4). After models were re-estimated using the optimized regularization

multiplier, the contribution of a small number of covariates dropped to below 1% but were

retained in the models.

Model performance

Predicted versus observed densities: Cross-validation. Cross-validation revealed that for

each of the 12 modeling regions, model predictions were consistent with the distribution of

presence data in the evaluation data set (Fig 2). Deviations between predictions and withheld

data were greatest for the Columbia Plateau, Southwestern Plains, Intermontane Basins and

Valleys, California Foothills, and Chihuahuan Desert modeling regions, which had some of

the smallest sample sizes of nest sites coupled with modeling areas being a smaller percentage

of their respective regions (Table 1).

Predicted versus observed densities in sub-regions. Overall, regional models predicted

nest site densities of golden eagles within sub-regions very well (Fig 3). Coefficients of determi-

nation between estimated number of nest sites within RND bins within sub-regions and

observed number of golden eagle nest sites within RND bins ranged from 0.36 (Southwestern

Plains) to 0.92 (Northwestern Plains; and nine of 12 r2 values were>0.75; Fig 3). In no cases

did models predict extremely small or large numbers of nest sites when the opposite reality

existed.

Independent test data. We obtained 553 independent nest site locations within nine

modeling regions. The number of independent nest sites by region ranged from 13 (California

Foothills) to 114 (Northern Great Basin). We compared the number of predicted to number of

observed nest sites occurring within each RND bin within each region, and generally found

only minor differences between predicted and observed nest sites within RND bins. Among all

independent nest sites, 40% of the differences, between predicted and observed, were less than

1, 71% were less than 2.5, and 91% were less than 5; the largest difference was 9.5 (Fig 4).

Projecting models outside of modeling regions. Three regional models were projected

to large areas with similar conditions. We had independent nest site data for the Madrean

Archipelago (n = 48 nest sites) and the Uinta Basin and North Park (n = 132 nest sites), and

used those to evaluate how well the projected models predicted the distribution of independent

nest sites among RND bins. The Southwestern Deserts Model was projected to the Madrean

Table 2. Number of initial variables considered, number of covariates in the initial model, and number of covariates in each modeling region’s final model.

Modeling Region Initial number of variables Number of covariates in initial model Number of covariates in final model

California Foothills 578 23 10

Central Basin and Range 457 22 10

Chihuahuan Desert 566 18 6

Columbia Plateau 457 25 13

Forested Montane 566 34 11

Intermontane Basins and Valleys 566 28 12

Northern Great Basin 276 21 11

Northwestern Plains 457 20 12

Southwestern Deserts 578 31 8

Southwestern Plains 511 22 10

Southwestern Plateaus 578 33 8

Wyoming Basin 284 24 14

https://doi.org/10.1371/journal.pone.0223143.t002
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Table 3. List of covariates that contributed�5% to each modeling region’s final model. Values beneath each modeling region are the covariate’s percentage contribu-

tion to fitting each final model.

Covariate

category

Covariate

description

Mean or

Standard

Deviation

Scale Modeling Region

CAFO CBRA CHDE COPT FOMO IMBV NGRB NWPL SWDE SWPL SWPT WYBA

Climate

Indices

Annual moisture

index

Mean 0.5

km

7.5

Degree days above

5 degrees C

Mean 3.2

km

5.4

Landcover Proportion alfalfa

landcover

SD 3.2

km

6.8

Proportion

deciduous,

evergreen, and

mixed forest

Mean 6.4

km

5.9

Proportion of

cottonwood

landcover

Mean 1.0

km

7.2

Proportion of

cultivated cropland

landcover

SD 6.4

km

10.6

Proportion of

grassland

landcover

Mean 3.2

km

27.8

Proportion of low

and tall sagebrush

landcover

Mean 6.4

km

10.1

Proportion of

sparsely vegetated

landcover

Mean 6.4

km

15.0

Proportion of tall

sagebrush

landcover

Mean 1.0

km

5.0

Proportion of tall

sagebrush

landcover

Mean 3.2

km

13.8

Proportion of tall

sagebrush

landcover

SD 0.5

km

12.5

Proportion pinyon-

juniper and juniper

woodland

SD 3.2

km

7.1

Proportion riparian

woodland

landcover

SD 6.4

km

6.6

Proportion shrub

landcover

Mean 3.2

km

5.7

Topographic

Indices

Local Elevational

Difference (LED)

SD 120

m

47.2 37.2

Topographic

wetness index

(TWI)

Mean 120

m

10.5

Terrain elevation SD 120

m

66.6

Terrain

Ruggedness Index

(TRI)

SD 120

m

94.2 80.9

Terrain slope Mean 120

m

16.8

Terrain slope SD 120

m

71.4 14.4 37.1 54.2 71.7

(Continued)
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Archipelago, and in general the model under-predicted the distribution of nest sites within

higher RND (>0.5) bins (Fig 5) and over-predicted the distribution of nest sites with lower

RND (<0.5) values. The Wyoming Basin model was projected to the Uinta Basin and North

Park, and it quite accurately predicted the distribution of nest sites among RND bins (Fig 5).

Due to the small number of nest sites in the California Central Valley, we were unable to

meaningfully evaluate the projection of the California Foothills model.

Area-adjusted frequencies

The rank correlation between bin and AAF ranks was> 0.96 for all regions (it was 1.0 for 10

regions) indicating a highly non-random distribution of nest sites among RND bins (Table 5).

In low RND bins the magnitude of difference from random expectation was not as pro-

nounced as it was for high RND bins (Table 5). For example, among all modeling regions, the

highest RND bins (0.9–1.0) had between 21.0–166.2 times more nest sites than expected based

on area within that bin, whereas the lowest RND bin (0–0.1) had from 4.2–16 times fewer nest

sites than expected (Table 5). Within modeling regions, variation in AAF values among bins

Table 3. (Continued)

Covariate

category

Covariate

description

Mean or

Standard

Deviation

Scale Modeling Region

CAFO CBRA CHDE COPT FOMO IMBV NGRB NWPL SWDE SWPL SWPT WYBA

Topographic

Landforms

Proportion of flat

landforms

SD 1.0

km

9.7

Proportion of flat

landforms

SD 2.0

km

10.5

Proportion of

gently sloping

landforms

SD 0.5

km

11.6 7.3 18.9

Proportion of ridge

landforms

Mean 120

m

14.3

Proportion of ridge

landforms

Mean 2.0

km

7.1

Proportion of

steeply sloping

landforms

Mean 120

m

63.6

Proportion of

steeply sloping

landforms

Mean 1.0

km

11.0

Proportion of

steeply sloping

landforms

SD 120

m

60.4

Proportion of

steeply sloping

landforms

SD 1.0

km

51.7

Proportion of

valley landforms

Mean 1.0

km

8.4

Wind and

Uplift

Wind power class

at 50 m

SD 0.5

km

7.7

Development Proportion of road

landcover

SD 3.2

km

7.1

CAFO = California Foothills, CBRA = Central Basin and Range, CHDE = Chihuahuan Desert, COPT = Columbia Plateau, FOMO = Forested Montane,

IMBV = Intermontane Basins and Valleys, NGRB = Northern Great Basin, NWPL = Northwestern Plains, SWDE = Southwestern Deserts, SWPL = Southwestern

Plains, SWPT = Southwestern Plateaus, WYBA = Wyoming Basin.

https://doi.org/10.1371/journal.pone.0223143.t003
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revealed extremely large differences in relative densities of nest sites. For example, the factor

by which the highest bin’s relative nest site density exceeded the lowest bin’s ranged from 132–

2,660 among regions (Table 6).

Nest site distribution among RND bins in modeling areas

All modeling areas and regions were primarily composed of low RND areas, while high RND

areas had limited spatial extent (Figs 6 and 7, S4 Fig, and S2 Table). Hence, a disproportion-

ately large number of nest sites were predicted to occur on a relatively small percentage of the

landscape. For example, we estimated that areas with RND values <0.3 represented from

62.8–97.8% (�x = 82.5%) of each modeling area, and those areas contained from 14.7–30.0% (�x
= 22.1%) of the nest sites. In contrast, areas with RND values>0.5 represented from 1.0–

12.8% (�x= 6.3%) of modeling areas, and those areas contained from 47.7–66.9% (�x = 57.3%) of

the nest sites.

Distribution of RND within modeling areas and modeling regions

Modeling areas represented from 26% - 95% (�x = 58%) of the extent of their respective model-

ing regions. To evaluate if modeling areas were representative of their regions, we compared

the percentage of each modeling area and its respective region represented within each RND

bin (Fig 6). In all regions, the largest differences occurred for the lowest valued RND bin; in 11

of 12 cases, modeling areas had less of the lowest RND bin than the modeling regions, with the

largest difference being 13 percentage points (SWPL; mean difference of absolute values was

4.3 percentage points). For higher valued RND bins (RND values>0.5), 59 of 60 differences

were<1 percentage point, with the largest difference being 1.3 percentage points.

In general, the majority area in all regions had low RND values. For example, the mean per-

cent of regions with RND values<0.3 was 85.1 (range = 65.1–98.9), and seven of the 12 model-

ing regions had>60% of their area with RND values� 0.1 (Fig 6, Table B in S2 Table). In

contrast, high-valued RND areas were a very small percentage of each region (Fig 6, Table B in

S2 Table), with RND bin 0.9–1.0 being<0.14% of each region’s area. RND values >0.5

occurred in 0.51% - 10.7% of the 12 modeling regions.

Table 4. Mean squared prediction error (MSE) among regularization multiplier values for each modeling regions’ final golden eagle nesting area model. The lowest

MSE value is italicized and has gray shading. For the Southwestern Plains, Southwestern Deserts, and California Foothills modeling regions, the lowest MSE was found at

regularization values of 5 (the largest value we initially evaluated), so we evaluated two larger regularization multiplier values (6 and 7) to determine whether MSE contin-

ued to decline with increasing regularization.

Modeling Region Regularization Value

0.1 0.5 0.75 1 2 3 4 5 6 7

California Foothills 10.89 11.03 8.13 7.5 10.36 7.17 9.23 7.88 6.21 8.31

Central Basin and Range 35.4 30.08 28.94 29.3 31.59 34.7 36.37 38.8

Chihuahuan Desert 5.46 4.17 3.12 3.62 3.29 2.82 3.75 3.33

Columbia Plateau 14.78 12.6 12.4 10.85 8.66 8.36 9.97 10.71

Forested Montane 27.87 22.08 27.34 22.23 26.38 20.87 14.12 21.3

Intermontane Basins and Valleys 17.62 8.74 7.51 7.57 5.16 7.42 7 8.42

Northern Great Basin 30.02 32.52 32.75 26.25 36.11 34.56 32.95 31.16

Northwestern Plains 33.92 31.96 33.41 29.65 41.59 25.7 25.21 26.86

Southwestern Deserts 12.35 7.62 9.74 9.66 5.98 8.55 5.95 5.83 11.3 7.32

Southwestern Plains 12.26 9.95 9.62 9.87 8.38 7.06 6.97 6.71 8.98 8.85

Southwestern Plateaus 21.5 16.03 14.65 18.67 19.38 16.92 18.18 14.97

Wyoming Basin 40.14 34.52 33.3 43.73 34.95 25.59 28.21 40.07

https://doi.org/10.1371/journal.pone.0223143.t004
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Fig 2. Bar graphs of mean (±2SE) predicted and observed number of golden eagle nest sites in each of 10 relative nest density (RND) bins within each

modeling region. Both predicted and observed numbers were from the 25% withheld data from 10 cross-validations of each region’s model.

https://doi.org/10.1371/journal.pone.0223143.g002
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Fig 3. Scatterplots of predicted versus observed number of golden eagle nest sites among 10 RND bins within each modeling region’s sub-regions. Numbers in

each region’s plot refer to sub-regions. Sub-region names can be found in S2 Fig.

https://doi.org/10.1371/journal.pone.0223143.g003
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Discussion

We developed relative nest site density models for golden eagles for use in large-scale conser-

vation prioritization efforts. Within all modeling regions only a small proportion of each

region’s area was predicted to have high RND values, and large areas had relatively low RND

values. The highest RND bin intervals were estimated to have 132–2,660 times greater nesting

densities than the lowest bin interval (Table 6). Thus, prioritization of conservation actions on

a small portion of each region could have a disproportionately large benefit to breeding golden

eagles.

Fig 4. Bar chart of distribution of observed and predicted nests sites (observed–predicted) within RND bins for 553 independent nest sites within nine

modeling regions.

https://doi.org/10.1371/journal.pone.0223143.g004
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Given the large geographic extent of the golden eagle’s range in the western U.S., our subdi-

vision of this area into discrete modeling regions was warranted, and resulted in good to excel-

lent models. Explicit consideration of unique local and regional scale habitat associations,

population characteristics and constraints is essential for effective conservation planning for

broadly distributed species such as greater sage-grouse (Centrocercus urophasianus)[59],

northern spotted owls (Strix occidentalis caurina)[3], and golden eagles [60, 61]. A conse-

quence of developing multiple regional models, however, is that relative nest density values

(RND and AAF) from individual regions are not directly comparable among regions. For

example, an RND value of 0.8 in one region may correspond to a different observed density

than RND of 0.8 in another region (Fig 8).

We sought models that would provide reliable predictions of relative density of golden

eagle nest sites, as opposed to describing and quantifying the species’ niche. Nonetheless, it is

important that model predictions are interpretable if they are to be incorporated into manage-

ment and conservation planning. Our models reflected well-known patterns of habitat selec-

tion exhibited by golden eagles across the western U.S. and corresponded well to previously

published descriptions and models of breeding habitat [62, 45]. Topographic features

Fig 5. Bar plots of the distribution of predicted and observed nest sites among RND bins in the Madrean Archipelago, and Uinta Basin and North Park.

https://doi.org/10.1371/journal.pone.0223143.g005

Table 5. Area Adjusted Frequencies of each modeling regions’ final model among RND bins. The Columbia Plateau modeling region had too few observations in bin

0.9–1 to be meaningfully estimated.

RND Bin Modeling Region

CAFO CBRA CHDE COPT FOMO IMBV NGRB NWPL SWDE SWPL SWPT WYBA

0.0–0.1 0.160 0.143 0.062 0.091 0.113 0.116 0.101 0.104 0.146 0.171 0.118 0.241

0.1–0.2 0.300 0.441 2.724 0.409 0.529 0.424 0.485 0.323 0.574 0.529 0.934 0.290

0.2–0.3 0.403 0.859 5.050 0.976 0.705 0.824 0.952 0.572 0.840 1.369 1.375 0.517

0.3–0.4 0.919 1.897 11.307 1.947 1.667 0.979 1.397 1.126 1.254 2.721 2.750 0.888

0.4–0.5 1.197 3.278 18.813 5.194 2.374 2.501 2.538 1.970 3.605 3.534 4.858 1.545

0.5–0.6 2.798 4.912 18.197 4.723 3.805 4.149 4.618 3.205 4.585 6.153 7.395 2.287

0.6–0.7 2.873 7.965 68.391 9.308 6.688 5.952 7.323 6.020 10.201 7.394 15.187 2.797

0.7–0.8 8.554 12.000 68.006 17.691 14.781 14.719 13.872 7.495 16.626 13.268 18.006 5.785

0.8–0.9 11.942 25.908 212.490 26.360 23.203 22.798 26.150 15.039 27.620 25.829 44.545 14.853

0.9–1.0 21.007 66.911 166.180 56.634 52.560 24.460 31.820 52.345 68.430 113.590 32.946

CAFO = California Foothills, CBRA = Central Basin and Range, CHDE = Chihuahuan Desert, COPT = Columbia Plateau, FOMO = Forested Montane,

IMBV = Intermontane Basins and Valleys, NGRB = Northern Great Basin, NWPL = Northwestern Plains, SWDE = Southwestern Deserts, SWPL = Southwestern

Plains, SWPT = Southwestern Plateaus, WYBA = Wyoming Basin.

https://doi.org/10.1371/journal.pone.0223143.t005
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corresponding to nest substrates on cliffs and steep terrain at finer scales (120 m– 1.0 km)

were important predictors in all model regions (Table 3). This finding is consistent with

empirical studies and regional models of breeding habitat selection in areas where golden

eagles nest predominantly on cliffs and rock outcrops [62, 45]. Field studies have consistently

identified variable terrain and gentle slopes, along with wind and orographic uplift variables,

as important predictors of golden eagle space-use within home ranges [52, 62–64]; in our

study these variables were moderately important covariates in 8 of 12 modeling regions (Figs

in S3 Fig). Our models also incorporated land cover variables thought to influence prey avail-

ability positively, such as sagebrush and grassland cover, and riparian habitat; or negatively,

including barren areas, cropland, and introduced annual grasses (e.g. cheatgrass, Bromus tec-
torum) [52, 64, 65]. At coarser scales (1.0–6.4 km) surrounding nest sites, model predictions

were influenced by regionally specific suites of covariates related to foraging and prey habitats.

In the California Foothills modeling region, where most golden eagles nest in woodlands, our

model predictions were strongly influenced by the combination of rugged terrain, grass cover

and woodland cover covariates (Figs in S3 Fig). These variables were found to be correlated

with spatial variation in occupancy and reproduction of golden eagle territories studied by

Wiens et al. [2] in the Diablo Range portion of our California Foothills modeling region.

Cross-validation showed that all models accurately predicted numbers of golden eagle nest

sites within RND bins, and geographic evaluation showed consistently good predictive success

among sub-regions for nine regions. We believe model results for the Central Basin and

Range, Northwestern Plains, Northern Great Basin, Wyoming Basin, Southwestern Plateaus,

Southwestern Deserts, Forested Montane, and Chihuahuan Desert were strongly validated.

Models for the Columbia Plateau, Southwestern Plains, Intermontane Basins and Valleys, and

California Foothills were less robust, but still performed quite well. For these four regions,

models could likely be improved by increasing samples of nest sites from larger portions of

each region. Variation in model quality among regions was related to variation in sample size

and dispersion patterns of thinned nest sites, as well as the degree of contrast between high

and low RND in regions. In general, as sample size increased and as modeling areas repre-

sented larger portions of modeling regions, model predictive power increased, and models

were more robust. The Chihuahuan Desert, for example, had by far the largest percentage

(95%) of its area in the lowest RND bin. Although we had a small sample of thinned nest sites

Table 6. Factor by which golden eagle nest density varies from the lowest bin for each modeling regions’ final model.

RND Bin Modeling Region

CAFO CBRA CHDE COPT FOMO IMBV NGRB NWPL SWDE SWPL SWPT WYBA

0.0–0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.1–0.2 1.9 3.1 43.6 4.5 4.7 3.6 4.8 3.1 3.9 3.1 7.9 1.2

0.2–0.3 2.5 6.0 80.8 10.7 6.2 7.1 9.4 5.5 5.8 8.0 11.6 2.1

0.3–0.4 5.8 13.2 181.0 21.4 14.7 8.4 13.8 10.8 8.6 15.9 23.2 3.7

0.4–0.5 7.5 22.9 301.2 57.1 21.0 21.5 25.0 18.9 24.7 20.6 41.1 6.4

0.5–0.6 17.5 34.3 291.3 51.9 33.6 35.6 45.5 30.8 31.5 35.9 62.5 9.5

0.6–0.7 18.0 55.6 1094.9 102.3 59.1 51.1 72.2 57.8 70.0 43.1 128.4 11.6

0.7–0.8 53.6 83.7 1088.7 194.4 130.7 126.4 136.8 72.0 114.1 77.4 152.2 24.0

0.8–0.9 74.8 180.8 3401.7 289.6 205.1 195.8 257.9 144.4 189.5 150.6 376.6 61.7

0.9–1.0 131.6 466.8 2660.4 500.6 451.3 241.3 305.6 359.2 399.1 960.2 136.9

CAFO = California Foothills, CBRA = Central Basin and Range, CHDE = Chihuahuan Desert, COPT = Columbia Plateau, FOMO = Forested Montane,

IMBV = Intermontane Basins and Valleys, NGRB = Northern Great Basin, NWPL = Northwestern Plains, SWDE = Southwestern Deserts, SWPL = Southwestern

Plains, SWPT = Southwestern Plateaus, WYBA = Wyoming Basin.

https://doi.org/10.1371/journal.pone.0223143.t006
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in the Chihuahuan Desert, the model performed well, we suspect owing to so much of the

region being of poor nesting suitability (i.e., high contrast).

When projecting the Southwestern Deserts, and Wyoming Basin models to the Madrean

Archipelago, and Uinta Basin and North Park, respectively, we found that only the model

Fig 6. Percent area within ten equal-sized relative nest site density (RND) bins in modeling areas (gray bars) and modeling regions (white bars).

https://doi.org/10.1371/journal.pone.0223143.g006
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Fig 7. Maps of the distribution of RND in all regions.

https://doi.org/10.1371/journal.pone.0223143.g007
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projected to the Uinta Basin and North Park resulted in accurate predictions of the distribu-

tion of independent nest sites (Fig 5). Although the projected models may be the best current

estimates of the distribution of RND in the projected to areas, we would recommend develop-

ment of RND models specifically within the Madrean Archipelago.

Converting SDM continuous outputs into binary classifications results in the loss of infor-

mation [66], especially considering that we can estimate the magnitude of differences in nest-

site density among RND bins within a modeling region by calculating AAF values. A binary

classification of our RND output within each region would have combined areas with large dif-

ferences in densities of golden eagle nest sites in both the “suitable” and “unsuitable” or “pres-

ent” and “absent” categories. For example, for all regions, the AAF values in the highest bin

(0.9–1.0) were from 21–166 times greater than would be expected based on a random distribu-

tion of nesting sites (Table 5). Furthermore, in seven modeling regions, the highest RND bin

Fig 8. Observed densities of golden eagle nest sites used in model training within ten equal-sized relative nest site density

(RND) bins, for each of twelve modeling regions.

https://doi.org/10.1371/journal.pone.0223143.g008
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was estimated to have more than twice the density of nest sites as the next lower bin (Table 5).

A binary classification of the results would have resulted in a complete loss of this understand-

ing of differences, which could have large consequences for conservation and management.

In the absence of designed, probabilistic nest surveys, the actual number of golden eagle

nest sites within each region could not be estimated. Observed densities of golden eagle nest

sites within RND bins in all modeling regions were consistent with nesting densities reported

in the literature (e.g., [64, 28, 2]). Two important points need to be made about our observed

golden eagle nest site densities within RND bins. First, they are based on a sample of thinned

nest sites, and it is certain that those underestimate the actual number of independent golden

eagle nest sites in modeling areas. Second, our density calculations assume contiguous areas of

each RND bin, whereas the reality is that nearly all breeding sites contain mixtures of varying

RND values. Few golden eagle pairs have uniformly contiguous territory-sized areas of high-

value RND habitat available to them. Nonetheless, we believe the variation we estimated in

AAF values among bins represents real variation, and the steep gradient between low and high

RND bin values represents differences with real biological relevance.

We interpreted model results based on MaxEnt output as measures of relative nest site den-

sity. Royle et al. [67] criticized the interpretation of MaxEnt output as a habitat suitability

index, in part because “it is not suitable for making explicit predictions of an actual state vari-

able.” We believe our approach, based on modifying MaxEnt output by computing an AAF,

transformed MaxEnt output into a biologically relevant state variable (relative density) that

has a clear biological interpretation. Although AAF is proportional to density, it is more than a

simple ranking of densities among RND bins because the magnitude of differences in density

among bins can be explicitly estimated. Our modeling results provide direct measures of spa-

tial variation in golden eagle nest site density and how this variation relates to spatial variation

in environmental covariates. We believe our modeling approach is broadly applicable to other

species and circumstances, including the modeling of presence-only data collected

opportunistically.

The golden eagle nest data we compiled came from a broad range of survey efforts, includ-

ing systematic statewide aerial surveys, local research projects, and landscape-scale surveys by

land management agencies. However, we recognize several potential sources of bias in the

data. For example, state and federally required surveys of public land targeted for oil, gas and

coal extraction, as well as wind and solar energy development areas, often resulted in relatively

high densities of golden eagle breeding sites recorded in those landscapes. Conversely, large

expanses of privately owned ranch and farmland receive few surveys, as do remote wilderness

areas. Even in surveyed areas, negative survey results are not always recorded into agency data-

bases. To address potential spatial bias in the distribution of presence locations, Phillips et al.

[54] recommended restricting the selection of available locations to a small neighborhood sur-

rounding the presence locations. In our analyses, we sampled available locations within the

union of a 20-km radius buffer (the modeling area) around all thinned golden eagle nest sites.

Because golden eagle home ranges can be very large, and individuals often make periodic

excursions <75 km outside of their home ranges in relatively short periods [52, 13], we

assumed that each nesting pair could assess the 20-km radius area surrounding their breeding

site.

Halvorsen [68] identified three motivations for fitting SDMs to presence-only data: 1) to

estimate an ecological response, 2) for spatial predictions to unsampled locations, and 3) pro-

jective prediction modeling (i.e., projecting the model outside of the fitted area). Our models

addressed all three goals, with an emphasis on spatial prediction. We chose to fit models using

covariates supported by previous studies and current understanding of golden eagle nest site

selection. This approach supported our primary focus on spatial prediction of golden eagle
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nesting density, while resulting in biologically interpretable models for use in conservation

planning.

Conservation applications

SDMs have broad applicability in conservation planning, but until recently have seldom been

incorporated into on-the-ground conservation at ecosystem or regional scales [30]. Notable

exceptions include habitat prioritization to support conservation of greater sage-grouse [69]

and critical habitat designation for the northern spotted owl [3]. We developed our golden

eagle nest site models with the goal of providing reliable planning and decision support tools

to inform on-the-ground conservation actions.

When considering golden eagle conservation in conjunction with other land-use decisions,

our models offer the critical insight that while deleterious impacts on a small percentage of

each modeling region could have disproportionately large population-level consequences to

eagles, there is also the opportunity for spatially efficient conservation actions that dispropor-

tionately benefit golden eagles. Application of the models to specific golden eagle manage-

ment-related questions requires a thorough understanding of model characteristics, including

limitations, appropriate scales for drawing inference, and in some instances, federal policies

and guidance governing implementation of the Eagle Act.

When projected as maps depicting relative density of golden eagle nest sites, our models

provide a regional- and landscape-scale analysis tool for proactive planning of development

projects that potentially impact eagles. This approach is valuable for a variety of land-use activ-

ities ranging from planning recreational vehicle trails on public lands to energy infrastructure

projects, most notably siting of wind energy development [70, 45]. Vulnerability of golden

eagles to collision with wind turbines, coupled with the Eagle Act’s prohibition of unautho-

rized incidental ‘take’ of eagles and subsequent legal risk to energy companies, provide an

incentive for proactive risk reduction through appropriate project siting. Our models are ide-

ally suited for landscape-scale ‘desktop’ analyses of potential eagle exposure described in fed-

eral guidance for wind energy development (Stage 1 Landscape-scale Site Assessment [71]), as

an initial step in assessing and comparing potential development areas. The cost and time

investment for landscape-scale surveys to support these assessments can be prohibitively costly

and time-consuming, making use of a model-based framework an effective and efficient

means to identify areas of relatively high risk (eagle exposure) for more detailed study or tar-

geted field surveys. Recognizing that golden eagles are among many biological, economic and

social considerations that influence the decision-making process during ‘prospecting’ by wind

energy developers [72], we encourage integration of our models into existing landscape analy-

sis tools such as the Western Association of Fish and Wildlife Agencies’ Crucial Habitat

Assessment Tool (CHAT; https://www.wafwa.org/initiatives/crucial_habitat_assessment_tool/

), The Nature Conservancy’s Site Wind Right program (https://Nature.org/sitewindright), and

the National Renewable Energy Laboratory’s Wind Prospector toolkit (https://maps.nrel.gov/

wind-prospector/).

Our models can be used to integrate golden eagle breeding habitat into ecosystem- or

regional-scale conservation planning efforts, such as sagebrush and greater sage-grouse initia-

tives (https://www.wafwa.org/initiatives/sagebrush_ecosystem_initiative/). The roughly 1.8

million km2 sagebrush biome encompasses 50% of the golden eagle’s range in the western con-

tiguous US, and 79% of the nest sites available for our modeling effort. Golden eagles and

greater sage-grouse face many of the same threats in the sagebrush biome (e.g., wildfire, devel-

opment, agricultural conversion, and other forms of loss or fragmentation of sagebrush [73,

74]), and there is a high degree of overlap in high quality breeding habitat for both species
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[75]. Thus, conservation efforts aimed at ameliorating threats in the sagebrush biome are likely

to benefit both species [22, 75]) and other sagebrush-associated species of conservation con-

cern [76, 77]. For example, landscape-scale removal of western juniper (Juniperus occidentalis)
to improve habitat conditions for sage-grouse [78, 79] would be anticipated to also benefit

golden eagle foraging habitat and important prey such as cottontail rabbits (Sylvilagus spp.

[80]), but could have negative impacts on eagles if implemented in high-quality nesting habitat

where junipers in steep terrain are used as nest sites.

Our RND models provide a spatially explicit measure of golden eagle abundance (exposure)

which combined with indices of various hazards in a formal risk analysis framework can iden-

tify priority areas for conservation action and mitigation. Bedrosian et al. [27] combined our

Northwestern Plains model with a spatial model of power pole density (a surrogate for electro-

cution hazard [81]) to create a spatially explicit index of electrocution risk. Such risk maps pro-

vide decision support tools to guide efficient allocation of conservation resources (e.g., power

pole retrofitting) to reduce take of golden eagles or as targeted compensatory mitigation to off-

set permitted take of golden eagles occurring elsewhere[19].

SDMs are an important component of spatially explicit population models, which are

increasingly popular for forecasting population responses to changes in climate, habitat, and

anthropogenic stressors [82, 83]. Wiens et al. [2] combined an SDM of golden eagle nesting

habitat suitability with spatial data on eagle prey abundance and potential risk factors (e.g.,

wind turbines, roads, and powerlines) in a spatial demographic model to simulate eagle popu-

lation responses to proposed energy development scenarios in California. Because our nest site

density models are based on relative habitat suitability, they can serve as spatial layers in simi-

lar demographic models to evaluate relative effectiveness of golden eagle conservation scenar-

ios at regional or larger scales.

The appropriateness of our models for conservation applications is constrained by the spa-

tial scale at which the models are applied. The base resolution of our models is 120-m

(1.44-ha) pixels, but evaluation of, at least, thousands of pixels is necessary before meaningful

comparisons of relative nest density can be made. Our models are intended for application at

regional, landscape, and project assessment area scales (i.e., from thousands to millions of ha);

and should not be used at the scale of small projects (hundreds of ha or less). From an ecologi-

cal perspective, it is important to recognize that our models represent only golden eagles occu-

pying breeding sites, not the full range of habitats used by non-breeding, wintering, or

migrating eagles.

Relative density models do not represent estimates of probability of occurrence or absolute

abundance. Although our relative density models can estimate the magnitude of difference in

nesting golden eagle densities among various areas, they do not estimate density per-se. We

caution against using our models by themselves for estimating actual (as opposed to relative)

abundance of eagles for use in (for example) estimating eagle exposure in a collision risk

model to predict collision fatalities at wind energy facilities [71, 84], or estimation of mortality

offset by a proposed compensatory mitigation project. Given an estimated or hypothetical

number of nest sites or territories within a landscape or region, however, our models can be

used to predict how those nest sites would be distributed.

Because we developed models separately for each modeling region, relative nest density val-

ues (RND and AAF) from individual regions are not directly comparable among regions. Each

model’s results are relative only to other areas within the same region. For larger-scale (e.g.,

state- or west-wide) conservation planning, standardization among regional models could be

accomplished using the area-adjusted frequency of training data (naïve density).

Modeling to support conservation planning is, in our view, an iterative process; models

should be refined when improved data become available. In the course of compiling and
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analyzing golden eagle nest site data, we identified areas with few surveys or nest records for

model training and in some cases (California Foothills, Columbia Plateau, and Southwestern

Plains) developed models that, although useful, would likely be improved with a larger, more

spatially balanced training sample of nest sites.
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